满秩矩阵一定可逆吗?
1个回答
展开全部
满秩矩阵一定可逆。
满秩矩阵一定可逆,因为满秩矩阵是判断一个矩阵是否可逆的充分必要条件。若矩阵是满秩矩阵,则为n阶方阵,|A|≠0,即|A|是A的n阶非零子式,符合可逆矩阵只要求|A|<>0的条件,即为可逆矩阵,同时,可逆矩阵的度行列式就是最高的不为零的子式(是n阶的),所以可逆矩阵也必然是满秩矩阵。
满秩矩阵注意事项
需要注意的是, 矩阵的阶梯形并不是唯一的, 但是阶梯形中非零行的个数总是一致的,单位阵是单位矩阵的`简称,它指的是对角线上都是1,其余元素皆为0的矩阵。
在矩阵的乘法中,有一种矩阵起着特殊的作用,如同数的乘法中的1,我们称这种矩阵为单位矩阵,简称单位阵。它是个方阵,除左上角到右下角的对角线(称为主对角线)上的元素均为1以外全都为0,可用将系数矩阵转化成单位矩阵的方法解线性方程组。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询