矩阵合同可以得出什么结论?
矩阵合同可以得出正负惯性指数相同,正惯性指数,秩相同。与相似结论不一样,相似与特征值有关。特征值是相同的,行列式也是一样的,相似就合同,两个矩阵主对角线的和是一样的。如果矩阵相似,那么其代表的就是不同坐标系(基)的同一个线性变换。
非齐次线性方程组,AX=B,当A的秩与其增广矩阵的秩=r<n时,证明方程有且仅有n-r+1个线性无关的解。对其次方程来说,n-r表示基础解系中含有n-r个变量。
矩阵的应用
矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。
其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则。矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。
日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则。