相关系数越接近1,说明两个变量之间的关系越接近正比关系。
例如y=kx+b,k>0和b为常数。
则y与x的相关系数为1,y随x的增加而增加,减少而减少。
线性相关系数|r|越大,两个变量的线性相关性越强,残差平方和越小的模型,拟合的效果越好,用相关指数R2来刻画回归效果,R2越大,说明模型的拟合效果越好。
相关系数有一个明显的缺点,即它接近于1的程度与数据组数n相关,这容易给人一种假象。因为,当n较小时,相关系数的波动较大,对有些样本相关系数的绝对值易接近于1。
当n较大时,相关系数的绝对值容易偏小。特别是当n=2时,相关系数的绝对值总为1。因此在样本容量n较小时,我们仅凭相关系数较大就判定变量x与y之间有密切的线性关系是不妥当的。