求∫1/(x^4-1)的不定积分
1个回答
展开全部
∫1/(x^4-1)dx=∫1/[(x?-1)(x?+1)]dx=(1/2)∫[1/(x?-1)]-[1/(x?+1)]dx=(1/2)∫[1/(x?-1)]dx-(1/2)∫[1/(x?+1)]dx=(1/4)∫[1/(x-1)]-[1/(x+1)]dx-(1/2)arctanx=(1/4)∫[1/(x-1)]dx-(1/4)∫[1/(x+1)]dx-(1/2)arctanx=(1/4)ln|x-1|-(1/4)ln|x+1|-(1/2)arctanx=(1/4)ln(|x-1|/|x+1|)-(1/2)arctanx
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |