对1/(1-t^2)^2求原函数

 我来答
北慕1718
2022-06-03 · TA获得超过851个赞
知道小有建树答主
回答量:135
采纳率:0%
帮助的人:49.5万
展开全部
∫dt/(1-t^2)^2
let
t= siny
dt =cosydy
∫dt/(1-t^2)^2
=∫dy/(cosy)^3
=∫(secy)^3dy
consider
∫(secy)^3dy = ∫secydtany
=secy.tany - ∫secy.(tany)^2dy
=secy.tany - ∫secy.[(secy)^2-1]dy
2∫(secy)^3dy =secy.tany + ∫secydy
=secy.tany + ln|secy+tany|
∫(secy)^3dy = (1/2)[secy.tany + ln|secy+tany| ] + C
=(1/2)[secy.tany + ln|secy+tany| ] + C
= (1/2)[ t/(1-t^2) + ln|√(1-t^2) + t/√(1-t^2) ] + C
∫dt/(1-t^2)^2
=∫(secy)^3dy
=(1/2)[ t/(1-t^2) + ln|√(1-t^2) + t/√(1-t^2) ] + C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式