1个回答
展开全部
设x=t^4,dx=4t³dt
原积分=
4∫(0,+∞)t^4/(1+t^4)².dt
=4[∫(0,+∞)dt/(1+t^4)-∫(0,+∞)dt/(1+t^4)²]
∫dt/(1+t^4)=√2/8{ln[(x²+√2x+1)/[(x²-√2x+1)]+2[arctan(√2x+1)+arctan(√2x-1)]}
∫dt/(1+t^4)²=1/32×{3√2ln[(x²+√2x+1)/[(x²-√2x+1)]+6√2[arctan(√2x+1)+arctan(√2x-1)]+8x/(x^4+1)}
ln[(x²+√2x+1)/[(x²-√2x+1)]|(0,+∞)=0
arctan(√2x+1)+arctan(√2x-1)]|(0,+∞)=π/2-π/4+π/2+π/4=π
x/(x^4+1)|(0,+∞)=0
代入化简得:
4×√2/8×2π-4×1/32×[6√2 π]
=(√2-6√2/8)π
=√2π/4
原积分=
4∫(0,+∞)t^4/(1+t^4)².dt
=4[∫(0,+∞)dt/(1+t^4)-∫(0,+∞)dt/(1+t^4)²]
∫dt/(1+t^4)=√2/8{ln[(x²+√2x+1)/[(x²-√2x+1)]+2[arctan(√2x+1)+arctan(√2x-1)]}
∫dt/(1+t^4)²=1/32×{3√2ln[(x²+√2x+1)/[(x²-√2x+1)]+6√2[arctan(√2x+1)+arctan(√2x-1)]+8x/(x^4+1)}
ln[(x²+√2x+1)/[(x²-√2x+1)]|(0,+∞)=0
arctan(√2x+1)+arctan(√2x-1)]|(0,+∞)=π/2-π/4+π/2+π/4=π
x/(x^4+1)|(0,+∞)=0
代入化简得:
4×√2/8×2π-4×1/32×[6√2 π]
=(√2-6√2/8)π
=√2π/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询