设f(x)可导,试证f(x)的两个零点之间一定有f(x)+f’(x)的零点

 我来答
黑科技1718
2022-06-04 · TA获得超过5846个赞
知道小有建树答主
回答量:433
采纳率:97%
帮助的人:80.6万
展开全部
如果f(x)+ f'(x)=0则可以尝试去构造一个函数其导数与f(x) +f'(x)有类似的结构的函数,因为从题意来看这道题应该要用到罗尔定理.所以构造函数g(x)=(e^x)*f(x)
假设f(x)在a,b两点值为0,则g(x)在a,b两点的值也都为0,由罗尔定理可知,在a,b之间至少存在一点使得g'(x)=0.结果显而易见
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式