4个回答
展开全部
初中数学知识总结(北师大版)
一、实数
1.1有理数
1.1.1有理数的定义:整数和分数的统称。
1.1.2有理数的分类:
(1)分为整数和分数。而整数分为正整数、零和负整数 ;分数分为正分数和负分数。
(2)分为正有理数、零和负有理数。而正有理数分为正整数和正分数;负有理数分为负整数和负分数。
1.1.3数轴
1.1.3.1数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。
1.1.3.2数轴的三要素:①原点②正方向③单位长度
1.1.3.3每个有理数都能用数轴上的点表示
1.1.4相反数
1.1.4.1相反数的定义:只有符号不同的两个数就做互为相反数(注:0的相反数为0
1.1.4.2相反数的意义:离原点距离相等的两个点所表示的两个数互为相反数
1.1.4.3相反数的判别
(1)若 ,则 、 互为相反数
(2)若两个数的绝对值相等,且符号相反,则这两个数互为相反数。
1.1.5倒数
1.1.5.1倒数的定义:若两个数的乘积等于1,则这两个数互为倒数。(若ab=1 ,则 a、b互为倒数)注:零没有倒数。
1.1.6绝对值
1.1.6.1绝对值的定义:在数轴上,表示一个数到原点的距离(a的绝对值记作∣a∣)
1.1.6.2绝对值的性质:∣a∣≥0
1.1.7有理数大小的比较
1.1.7.1正数大于0,负数小于0
1.1.7.2正数大于负数
1.1.7.3两个正数,绝对值大的这个数就大,绝对值小的这个数就小;两个负数,绝对值大的这个数就小,绝对值小的这个数就大。
1.1.7.4作差法:两个有理数相减。若大于0,则被减数大;若等于0,则两个数相等;若小于0,则减数大。
1.1.7.5作商法:两个有理数相除(除数或分母不为0)。若大于1,则被除数大;若等于1,则两个数相等;若小于1,则除数大。
1.1.8有理数的加法
1.1.8.1运算法则:①符号相同的两个数相加,取相同的符号,并把绝对值相加②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值(互为相反数的两个数相加等于0)③任何有理数加0仍等于这个数。
1.1.8.2加法交换律在有理数加法中仍然适用,即: a+b=b+a
1.1.8.3加法结合律在有理数加法中仍然适用,即: a+(b+c)=(a+b)+c
1.1.9有理数的减法
1.1.9.1运算法则:减去一个数等于加上这个数的相反数
1.1.9.2有理数减法—转化→有理数加法
1.1.10有理数的乘法
1.1.10.1运算法则:①两个数相乘,同号得正,异号得负,并把绝对值相乘(口诀:正正得正,负负得正,正负的负,负正的负)②任何有理数乘0仍等于0③多个不等于0的有理数相乘时,积的符号由负因式的个数决定:当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。
1.1.10.2乘法交换律在有理数乘法中仍然适用,即
1.1.10.3乘法结合律在有理数乘法中仍然适用,即
1.1.10.4乘法分配律在有理数乘法中仍然适用,即
1.1.11有理数的除法
1.1.11.1运算法则:除以一个数等于乘上这个数的倒数(除数不能为0,否则无意义)
1.1.11.2有理数除法—转化→有理数乘法
1.1.12有理数的乘方
1.1.12.1有理数乘方的意义:求相同因数积的运算叫做乘方
1.1.12.2有理数乘方的表示方法: 个相同因数 相乘表示为 ,其中 称为底数, 称为指数,而乘方的结果叫做幂,读作“ 的 次方”或“ 的 次幂”(当 =2时,读作 的平方,简称 方)
1.1.12.3运算规律:①正数的任何次幂都为正数②负数的奇次幂是负数,负数的偶次幂是正数③0的任何次幂都等于0(0次幂除外)④任何数的零次幂都等于1(0次幂除外)
1.1.13有理数的混合运算
1.1.13.1运算顺序:①先算乘方(即:三级运算),再算乘除(即:二级运算),最后算加减(即:一级运算)②如果是同级运算,则按从左到右的运算顺序计算③如果有括号,先算小括号,再算中括号,最后算大括号。
1.1.14科学记数法
1.1.14.1科学记数法的定义:把一个大于10的有理数记成 的形式(其中1≤ ≤10)叫做科学记数法。
1.1.15近似数
1.1.15.1近似数的定义:接近准确数而不等于准确数的数叫做这个准确数的近似数或近似值。
1.1.15.2求近似值的方法:①四舍五入法②收尾法(进一法)③去尾法。
1.1.15.3有效数字的定义:一个近似数精确到哪一位,从左起第一个不是0的数字起,到这一位数字上的所有数字(包括其中的0)叫做这个近似值的有效数字。
1.2 实数
1.2.1平方根
1.2.1.1平方根的定义:如果一个数的平方等于 ,这个数就叫做 的平方根(或二次方根),即 ,我们就说 是 的平方根。
1.2.1.2平方根的表示方法:如果 ( >0),则 的平方根 记作 ,“ ”读作“正负根号 ”,其中 读作“二次根号”,2叫做根指数, 叫做被开方数。
1.2.1.3平方根的性质:一个正数的平方根有两个,这两个平方根互为相反数;0的平方根只有一个,就是0;负数没有平方根。
1.2.1.4开平方的定义:求一个数的平方根的运算就叫做开平方(开平方和平方互为逆运算)。
1.2.2算术平方根
1.2.2.1算术平方根的定义:正数 有两个平方根,其中正数a的正的平方根叫做 的算术平方根,记作 ,读作“根号 ”。
1.2.2.2算术平方根的性质:①具有双重非负性,即: ≥0, ≥0② =a( ≥0)③ =∣ ∣,当 ≥0时, =∣ ∣= ;当 ≤0时, =∣ ∣=-
1.2.3立方根
1.2.3.1立方根的定义:如果一个数的立方等于 ,这个数就叫做 的立方根(或叫做 的三次方根)
1.2.3.2立方根的表示方法:如果 ,则x叫做a的立方根,记作 ,其中 叫做被开方数,3叫做根指数。
1.2.3.3立方根的性质:①正数有一个立方根,仍为正数,负数有一个立方根,仍为负数,0的立方根仍为0。②
1.2.3.4开立方的定义:求一个数的立方根的运算叫做开立方(它与立方互为逆运算)
1.2.4无理数
1.2.4.1无理数的定义:无限不循环小数叫做无理数。
1.2.4.2判断无理数的注意事项:①带根号的数不一定是无理数,如 是有理数,而不是无理数;②无理数不一定是开方开不尽的数,如圆周率
1.2.5实数
1.2.5.1实数的定义:有理数和无理数的统称
1.2.5.2实数的性质:①实数与数轴上的点一一对应②实数a的相反数是-a,实数 的倒数是 ( ≠0)③∣ ∣≥0,∣ ∣=∣- ∣④有理数范围内的运算律、幂的运算法则、乘法公式,在实数范围内同样适用
1.2.5.3两个实数的大小比较:①正数大于0,负数小于0,正数大于一切负数,两个负数比较大小,绝对值大的反而小。②在数轴上表示的两个数,右边的数总比左边的数大③作商法:两个实数相除(除数或分母不为0)。若大于1,则被除数大;若等于1,则两个数相等;若小于1,则除数大。④作差法:两个有理数相减。若大于0,则被减数大;若等于0,则两个数相等;若小于0,则减数大。
1.2.6二次根式
1.2.6.1二次根式的定义:式子 ( ≥0)叫做二次根式。
1.2.6.2二次根式的运算性质:① ( ≥0, ≥0)② ( ≥0, >0)
1.2.6.3最简二次根式:满足下列两个条件的二次根式叫做最简二次根式:①被开方数的因数是整数,因式是整式②被开方数中不含能开得尽的因数或因式
1.2.6.4分母有理化定义:在分母含有根式的式子中,把分母中的根号划去的过程叫做分母有理化。
1.2.6.5二次根式的混合运算:应按顺序先做乘方运算,再做乘除运算,最后做加减运算;若有括号,应按小、中、大括号的顺序进行运算。
二、代数式
2.1代数式
2.1.1代数式的定义:用运算符号把数或字母连接而成的式子叫做代数式。
2.1.2代数式的分类:代数式分为有理式和无理式,有理式又可以分为整式和分式,而整式又可以分为单项式和多项式。
2.1.3列代数式的定义:把问题中与数量有关的词语,用含有数、字母和运算符号的式子表示出来,就是列代数式。
2.1.4代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值。
2.2整式
2.2.1整式的概念
2.2.1.1单项式:只含有数字与字母乘积的代数式叫单项式(单独的一个数或字母也是单项式)。其中,数字因式叫做单项式的系数,单项式中所有的字母的指数的和叫做这个单项式的次数。
2.2.1.2多项式:几个单项式的和叫做多项式。多项式中的每一个单项式叫做多项式的项,其中不含字母的项叫做常数项。
2.2.1.3多项式的次数:多项式中系数最高项的次数叫做多项式的次数。
2.2.1.4降(升)幂排列:把一个多项式按某一字母的指数从大(小)到小(大)的顺序排列起来。
2.2.1.5整式的定义:单项式和多项式的统称。
2.2.1.6同类项的定义:所含字母相同,并且相同字母的次数也相同的项叫做同类项。
2.2.1.7合并同类项:把多项式中同类项合成一项的过程叫做合并同类项。
2.2.1.8合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。
2.2.2整式的运算
2.2.2.1整式的加减法计算法则:先去括号,再合并同类项。
2.2.2.2整式的乘除法计算法则:①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即 (m,n是正整数)②同底数幂的除法法则:同底数幂相除,底数不变,指数相减即 ( ≠0, , 是正整数, > )③幂的乘方法则:幂的乘方,底数不变,指数相乘,即 (m,n是正整数)④积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,即 ( 是正整数)。
2.2.2.3单项式乘以单项式的法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式中只含有的字母,则连同它的指数作为积的一个因式。(在计算系数时,应先确定符号,再计算绝对值,当系数为-1时,只须在结果的最前面写上“-”)
2.2.2.4单项式乘以多项式的法则:用单项式乘以多项式的每一项,再把所得的积相加。
2.2.2.5单项式除以单项式的运算法则:一般地,单项式相除,把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
2.2.2.6多项式除以单项式的运算法则:一般地,多项式除以单项式,先把这个多项式的每一项分别除以这个单项式,再把所得的商相加。
2.2.2.7多项式乘以多项式的法则:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
2.2.2.8平方差公式:两个数的和与这两个数的差的积等于这两个数的平方差,即 (注意事项:公式中的 , 所代表的内容具有广泛性,可以表示数字,也可以表示单项式或多项式)
2.2.2.9完全平方公式:两个数和(或差)的平方等于它们的平方和,加上(或减去)它们积的2倍,即: (注意事项:公式中的a,b所代表的内容具有广泛性,可以表示数字,也可以表示单项式或多项式)
2.2.2.10立方和与立方差公式:两数和(或差)乘以它们的平方和与它们积的差(或和),等于这两个数的立方和(或立方差),即
2.2.2.11其他乘法公式:
①
②
2.2.3因式分解
2.2.3.1因式分解的定义:把一个多项式化成几个单项式的积的形式,叫做多项式的因式分解。
2.2.3.2因式分解的注意事项:因式分解要分解到不能再分解为止;因式分解与整式乘法互为逆运算。
2.2.3.3公因式的定义:一个多项式的各项都含有的相同的因式叫做这个多项式各项的公因式。
2.2.3.4分解因式的方法:①提取公因式法:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种因式分解叫做提取公因式法。即: ②运用公式法:反用乘法公式,可以把某些多项式分解因式,这种方法叫做运用公式法(常用的有: 和 )③分组分解法:利用分组来分解因式的方法叫做分组分解法④十字相乘法:将 型的二次三项式分解为 。
2.3分式
2.3.1分式的概念
2.3.1.1分式的定义:A,B表示两个整式,如果B中含有字母,式子 就叫做分式。其中A叫做分式的分子,B叫做分式的分母。
2.3.1.2 有理式的定义:整式和分式的统称。
2.3.1.3 繁分式的定义:分式的分子或分母中含有分式,这样的分式叫做繁分式。
2.3.1.4最简分式的定义:当一个分式的分子和分母没有公因式的时候就叫做最简分式。
2.3.1.5约分的定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去的过程就叫做约分。
2.3.1.6通分的定义:把异分母的分式化成和原来的分式相等的同分母的分式的过程叫做通分。
2.3.2分式的基本性质
2.3.2.1分式的基本性质:分式的分子分母都同时乘以或同时除以一个不为0的整式,分式的值不变,即
2.3.2.2分式的符号法则:分式的分子、分母和分式本身的符号,改变其中任何两个,分式的值都不变,即
2.3.3分式的运算
2.3.2.3 分式的加减法计算法则:同分母分式相加减,分母不变,分子相加减,即 ;异分母分式相加减,先通分成同分母的分式,再按同分母的分式相加减的法则进行计算,即 .
2.3.2.4分式的乘除法计算法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母,即 ;分式除以分式,把除式的分子分母颠倒位置后,再按分式的乘法法则进行计算。
2.3.2.5分式的混合运算:①先算乘方(即:三级运算),再算乘除(即:二级运算),最后算加减(即:一级运算)②如果是同级运算,则按从左到右的运算顺序计算③如果有括号,先算小括号,再算中括号,最后算大括号。
三、方程与方程组
3.1方程与方程组
3.1.1基本概念
3.1.1.1等式的定义:用等号表示相等关系的式子叫做等式。
3.1.1.2等式的性质:①等式两边同时加上或同时减去一个数或一个整式,所得结果仍是等式②等式两边同时乘以或同时除以一个不为0的数,所得结果仍为等式。
3.1.1.3方程的定义:含有未知数的等式叫做方程。
3.1.1.4方程的解:使方程两边相等的未知数的值叫做方程的解,只有一个未知数的方程的解也叫做方程的根。
3.1.1.5解方程的定义:求得方程的解的过程叫做解方程。
3.1.1.6一元一次方程:含有一个未知数,并且未知数的次数是1,系数不等于0的方程叫做一元一次方程,它的标准形式是ax+b=0,其中x是未知数,它有唯一解, (a≠0)
3.1.1.7二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。
3.1.1.8一元二次方程:只含有一个未知数,并且未知数的最高次数是2,这样的方程叫做一元二次方程,一般形式是ax+bx+c=0,其中ax称为二次项,bx叫做一次项,c叫做常数项。
3.1.1.9一元二次方程的解法:①直接开方法②配方法③求根公式法④因式分解法。
3.1.1.11一元二次方程根的判别式: 叫做一元二次方程ax+bx+c=0的判别式。
3.1.1.12一元二次方程根与系数的关系:设 、 是方程ax+bx+c=0(a≠0)的两个根,那么 + = , = ,根与系数关系的逆命题也成立。
3.1.1.13一元二次方程根的符号:设一元二次方根ax+bx+c=0(a≠0)的两根为 、 。当 ≥0且 >0, + >0,两根同正号;当 ≥0,且 >0, + <0,两根同负号; <0时,两根异号 + >0时,正根的绝对值较大, + <0时,负根的绝对值较大。
3.1.1.14整式方程:方程两边都是关于未知数的整式,这样的方程叫做整式方程。
3.1.1.15分式方程:分母里含有未知数的方程叫做分式方程。
3.1.1.16增根:在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的增根(使方程的分母为0的根),因此解分式方程时要验根。验根的方法通常是把求得整式方程的根代入最简公分母,使最简公分母为0的就是增根。
3.1.1.17二元一次方程:含有两个未知数并且含有未知数的项的次数是1,这样的方程叫做二元一次方程(注意:对于未知数来说,构成方程的代数式必须是整式)。
3.1.1.18二元一次方程的解:满足二元一次方程的一对未知数的值叫做二元一次方程的一个解。
3.1.1.19二元一次方程的解法:给其中一个未知数一个确定值,解关于另一个未知数的方程,得出这个未知数的值,由此就得到二元一次方程的一个解。
3.1.1.20二元一次方程组:两个二元一次方程合成一组就叫做二元一次方程组。
3.1.1.21二元一次方程组的解:构成二元一次方程的公共解叫做二元一次方程组的解。
3.1.1.22二元一次方程组的解法:解二元一次方程组的基本思想就是消去一个未知数转化成一元一次方程求解,消元的基本方法就是代入法和加减法。(①代入法:代入法的基本思想是方程组中的同一个未知数应该表示相同的值,所以一个方程中的某个未知数,可以用另一个方程中表示这个未知数的代数式来代替,从而就可以减少一个未知数,把二元一次方程组转化成一元一次方程。②加减法:加减法的基本思想是,根据等式的基本性质2,使两个方程中某一个未知数的系数绝对值相等,然后根据等式的基本性质1,将两个方程相加减,从而可以消去一个未知数,转化为一元一次方程。)
3.1.1.23三元一次方程组:含有三个未知数,并且每个方程的未知项次数都是1,这样的方程叫做三元一次方程组。
3.1.1.24三元一次方程组的解法:解三元一次方程组的基本思想是消去一个未知数转化成二元一次方程组,再按照二元一次方程组的解法来解。
3.2列方程(方程组)解应用题
3.2.1基本概念
3.2.1.1列方程解应用题的一般步骤:审题、设元、列方程、解方程、检验、写答。
3.2.1.2设未知数的方法:①直接设元;②间接设元;③设辅助未知数。
3.2.2常见的应用题
3.2.2.1行程问题:行程问题可以分为相遇问题、追及问题、环形问题、水(风)流四类问题。基本关系式:路程=速度×时间( )。
3.2.2.2工程问题:基本关系式:工作量=工作时间×工作效率。
3.2.2.3数字问题:(了解几个相关名词的概念,如连续自然数、连续整数、连续奇数、连续偶数,并懂得多位数的几种表示方法)。
3.2.2.4增长率问题:基本关系式:①原产量+增产量=实际产量②增长率=增长数/基础数③实际产量=原产量(1+增长率)
3.2.2.5利润问题:基本关系式:利润=售价-进价。
3.2.2.6利率问题:(了解几个相关名词的概念,如:本金、利息、本息和、期数、利率)基本关系式:本息和=本金+利息,利息=本金×利率×期数。
3.2.2.7几何问题:常用的公式:长方形、正方形、三角形、梯形、园的面积和周长公式。
3.2.2.8浓度问题:基本关系式:浓度=溶质质量/溶液质量×100%
3.2.2.9其他问题:比例分配问题、鸡兔同笼问题、函数应用题…
四、不等式与不等式组
4.1不等式
4.1.1基本概念
4.1.1.1不等式:用不等号表示不等关系的式子叫做不等式。
4.1.1.2 不等号:常用的不等号有:①<②>③≠④≤⑤≥
4.1.1.3不等式的性质:①不等式两边同时加上(或减去)一个整式,不等号的方向不变,即若 > ,则 > ②不等式的两边同时乘以(或同时除以)一个正数,不等号的方向不变③不等式的两边同时乘以(或同时除以)一个负数,不等式的符号改变。
4.1.1.4不等式的解:使得不等式成立的未知数的值叫做不等式的解。
4.1.1.5不等式的解集:一个不等式的所有解组成这个不等式的解集。
4.1.1.6解不等式的基本方法:①去分母②去括号③移项④合并同类项⑤化系数为1
4.2不等式组
4.2.1基本概念
4.2.1.1一元一次不等式组:由几个一元一次不等式组成的不等式组叫做一元一次不等式组。
4.2.1.2一元一次不等式组的解集:几个一元一次不等式的解集的公共部分叫做一元一次不等式组的解集。
4.2.1.3解不等式组:求不等式的解集的过程叫做解不等式。
五、函数
5.1平面直角坐标系 变量与函数
5.1.1基本概念
5.1.1.1平面直角坐标系:为了用一对实数表示平面内一点,在平面内画两条互相垂直的数轴,组成平面直角坐标系。其中,水平的数轴叫做 轴或者横轴,取向右为正方向;铅直的数轴叫做 轴或者纵轴,取向上为正方向,两个数轴相交于点O,点O叫做坐标原点。
5.1.1.2象限:横轴和纵轴把平面分为四个象限,其中右上角的为第一象限,左上角的为第二象限,左下角的为第三象限,右下角的为第四象限
5.1.1.3点的坐标的表示方法:按横坐标在前,纵坐标在后的顺序书写,中间用逗号隔开。
5.1.1.4常量和变量:在某一变化过程中,数值保持不变的量叫做常量,可以取不同值的量叫做变量
5.1.1.5函数:在某个变化过程中,有两个变量 和 ,如果对于x在某一范围内的每一个确定的值, 有惟一确定的值和它对应,那么就把 叫做 的函数,其中, 为因变量, 为自变量。
5.1.1.6自变量的取值范围:如果用解析式表示函数,那么自变量的取值范围就是使解析式有意义的自变量取值的全体。
5.1.1.7函数值:对于自变量在取值范围内的一个确定的值,例如 = ,函数有惟一确定的对应值,这个对应值叫做 = 时的函数值,简称函数值
5.1.1.8函数的表示方法:①解析法:把两个变量的对应关系用数学式子来表示②列表发:把两个变量的对应关系用列表的方法表示③图像法:把两个变量的对应关系在平面直角坐标系内用图像表示。(通常将以上三种方法结合起来运用)
5.1.1.9由函数解析式画图像的步骤:列表、描点、连线。
5.2正比例函数
5.2.1基本概念
5.2.1.1正比例函数的定义:形如 ( ≠0)的函数叫做正比例函数。
5.2.1.2 正比例函数的图像:正比例函数的图像是经过坐标原点的一条直线。
5.2.1.3 正比例函数的性质:①当 >0时, 随 的增大而增大②当 <0时, 随 的增大而减小。
5.3一次函数
5.3.1基本概念
5.3.1.1 一次函数的定义:形如 ( , 是常数)的函数叫做一次函数。
5.3.1.2 一次函数的图像:一次函数的图像是一条与直线 ( ≠0)平行的一条直线。
5.3.1.3一次函数的性质:
①当 >0时,y随x的增大而增大
当 >0时,图像经过一二三象限
当 <0时,图像经过一三四象限
当 =0时,为正比例函数
②当 <0时,y随x的增大而减小。
当 >0时,图像经过一二四象限
当 <0时,图像经过二三四象限
当 =0时,为正比例函数
5.4反比例函数
5.4.1基本概念
5.4.1.1 反比例函数的定义:形如 的函数叫做反比例函数。
5.4.1.2 反比例函数的图像:反比例函数的图像是双曲线。
5.4.1.3 反比例函数的性质:①当 >0时,在一、三象限内, 随x增大而减小②当 <0时,在二、四象限内, 随 的增大而增大。
5.5二次函数
5.5.1基本概念
5.5.1.1二次函数的定义:形如 ( , , 为常数, ≠0)的函数叫做二次函数。
5.5.1.2二次函数的图像:是对称轴平行与 轴的抛物线。
5.5.1.3二次函数的性质:①抛物线 ( ≠0)的顶点坐标是 ,对称轴是直线 ②当 >0时,在 时,函数有最小值 ;当 <0时,在 时,函数有最大值 ③当 时,抛物线 ( ≠0)与x轴有两个交点;当 <0时,抛物线与x轴没有交点;当 =0时,抛物线与x轴有一个交点。④当 >0时,抛物线开口向上,当a<0时抛物线开口向下⑤当 >0时,交点在y轴的正半轴,当c<0时,交点在y轴的负半轴,当 =0时,交点在坐标原点⑦当a、b同号时, <0,抛物线的对称轴在y轴的左侧,当 、 异号时, >0,抛物线的对称轴在 轴的右侧,当 =0时,抛物线的对称轴就是 轴。
5.5.1.4二次函数解析式的三种形式:①一般式;②交点式;③顶点式。
六、相交线与平行线
6.1相交线
6.1.1基本概念
6.1.1.1对等角的定义:两条直线相交成四个角,其中没有公共边的两个角叫做对顶角。
6.1.1.2对顶角的性质:对顶角相等。
6.1.1.3对顶角的定义与性质的关系:对顶角的定义揭示了两个角的关系,而对顶角的性质揭示了对顶角的数量关系。只有用定义判定出两个角是对顶角才能根据角的性质得出这两个角相等。
一、实数
1.1有理数
1.1.1有理数的定义:整数和分数的统称。
1.1.2有理数的分类:
(1)分为整数和分数。而整数分为正整数、零和负整数 ;分数分为正分数和负分数。
(2)分为正有理数、零和负有理数。而正有理数分为正整数和正分数;负有理数分为负整数和负分数。
1.1.3数轴
1.1.3.1数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。
1.1.3.2数轴的三要素:①原点②正方向③单位长度
1.1.3.3每个有理数都能用数轴上的点表示
1.1.4相反数
1.1.4.1相反数的定义:只有符号不同的两个数就做互为相反数(注:0的相反数为0
1.1.4.2相反数的意义:离原点距离相等的两个点所表示的两个数互为相反数
1.1.4.3相反数的判别
(1)若 ,则 、 互为相反数
(2)若两个数的绝对值相等,且符号相反,则这两个数互为相反数。
1.1.5倒数
1.1.5.1倒数的定义:若两个数的乘积等于1,则这两个数互为倒数。(若ab=1 ,则 a、b互为倒数)注:零没有倒数。
1.1.6绝对值
1.1.6.1绝对值的定义:在数轴上,表示一个数到原点的距离(a的绝对值记作∣a∣)
1.1.6.2绝对值的性质:∣a∣≥0
1.1.7有理数大小的比较
1.1.7.1正数大于0,负数小于0
1.1.7.2正数大于负数
1.1.7.3两个正数,绝对值大的这个数就大,绝对值小的这个数就小;两个负数,绝对值大的这个数就小,绝对值小的这个数就大。
1.1.7.4作差法:两个有理数相减。若大于0,则被减数大;若等于0,则两个数相等;若小于0,则减数大。
1.1.7.5作商法:两个有理数相除(除数或分母不为0)。若大于1,则被除数大;若等于1,则两个数相等;若小于1,则除数大。
1.1.8有理数的加法
1.1.8.1运算法则:①符号相同的两个数相加,取相同的符号,并把绝对值相加②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值(互为相反数的两个数相加等于0)③任何有理数加0仍等于这个数。
1.1.8.2加法交换律在有理数加法中仍然适用,即: a+b=b+a
1.1.8.3加法结合律在有理数加法中仍然适用,即: a+(b+c)=(a+b)+c
1.1.9有理数的减法
1.1.9.1运算法则:减去一个数等于加上这个数的相反数
1.1.9.2有理数减法—转化→有理数加法
1.1.10有理数的乘法
1.1.10.1运算法则:①两个数相乘,同号得正,异号得负,并把绝对值相乘(口诀:正正得正,负负得正,正负的负,负正的负)②任何有理数乘0仍等于0③多个不等于0的有理数相乘时,积的符号由负因式的个数决定:当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。
1.1.10.2乘法交换律在有理数乘法中仍然适用,即
1.1.10.3乘法结合律在有理数乘法中仍然适用,即
1.1.10.4乘法分配律在有理数乘法中仍然适用,即
1.1.11有理数的除法
1.1.11.1运算法则:除以一个数等于乘上这个数的倒数(除数不能为0,否则无意义)
1.1.11.2有理数除法—转化→有理数乘法
1.1.12有理数的乘方
1.1.12.1有理数乘方的意义:求相同因数积的运算叫做乘方
1.1.12.2有理数乘方的表示方法: 个相同因数 相乘表示为 ,其中 称为底数, 称为指数,而乘方的结果叫做幂,读作“ 的 次方”或“ 的 次幂”(当 =2时,读作 的平方,简称 方)
1.1.12.3运算规律:①正数的任何次幂都为正数②负数的奇次幂是负数,负数的偶次幂是正数③0的任何次幂都等于0(0次幂除外)④任何数的零次幂都等于1(0次幂除外)
1.1.13有理数的混合运算
1.1.13.1运算顺序:①先算乘方(即:三级运算),再算乘除(即:二级运算),最后算加减(即:一级运算)②如果是同级运算,则按从左到右的运算顺序计算③如果有括号,先算小括号,再算中括号,最后算大括号。
1.1.14科学记数法
1.1.14.1科学记数法的定义:把一个大于10的有理数记成 的形式(其中1≤ ≤10)叫做科学记数法。
1.1.15近似数
1.1.15.1近似数的定义:接近准确数而不等于准确数的数叫做这个准确数的近似数或近似值。
1.1.15.2求近似值的方法:①四舍五入法②收尾法(进一法)③去尾法。
1.1.15.3有效数字的定义:一个近似数精确到哪一位,从左起第一个不是0的数字起,到这一位数字上的所有数字(包括其中的0)叫做这个近似值的有效数字。
1.2 实数
1.2.1平方根
1.2.1.1平方根的定义:如果一个数的平方等于 ,这个数就叫做 的平方根(或二次方根),即 ,我们就说 是 的平方根。
1.2.1.2平方根的表示方法:如果 ( >0),则 的平方根 记作 ,“ ”读作“正负根号 ”,其中 读作“二次根号”,2叫做根指数, 叫做被开方数。
1.2.1.3平方根的性质:一个正数的平方根有两个,这两个平方根互为相反数;0的平方根只有一个,就是0;负数没有平方根。
1.2.1.4开平方的定义:求一个数的平方根的运算就叫做开平方(开平方和平方互为逆运算)。
1.2.2算术平方根
1.2.2.1算术平方根的定义:正数 有两个平方根,其中正数a的正的平方根叫做 的算术平方根,记作 ,读作“根号 ”。
1.2.2.2算术平方根的性质:①具有双重非负性,即: ≥0, ≥0② =a( ≥0)③ =∣ ∣,当 ≥0时, =∣ ∣= ;当 ≤0时, =∣ ∣=-
1.2.3立方根
1.2.3.1立方根的定义:如果一个数的立方等于 ,这个数就叫做 的立方根(或叫做 的三次方根)
1.2.3.2立方根的表示方法:如果 ,则x叫做a的立方根,记作 ,其中 叫做被开方数,3叫做根指数。
1.2.3.3立方根的性质:①正数有一个立方根,仍为正数,负数有一个立方根,仍为负数,0的立方根仍为0。②
1.2.3.4开立方的定义:求一个数的立方根的运算叫做开立方(它与立方互为逆运算)
1.2.4无理数
1.2.4.1无理数的定义:无限不循环小数叫做无理数。
1.2.4.2判断无理数的注意事项:①带根号的数不一定是无理数,如 是有理数,而不是无理数;②无理数不一定是开方开不尽的数,如圆周率
1.2.5实数
1.2.5.1实数的定义:有理数和无理数的统称
1.2.5.2实数的性质:①实数与数轴上的点一一对应②实数a的相反数是-a,实数 的倒数是 ( ≠0)③∣ ∣≥0,∣ ∣=∣- ∣④有理数范围内的运算律、幂的运算法则、乘法公式,在实数范围内同样适用
1.2.5.3两个实数的大小比较:①正数大于0,负数小于0,正数大于一切负数,两个负数比较大小,绝对值大的反而小。②在数轴上表示的两个数,右边的数总比左边的数大③作商法:两个实数相除(除数或分母不为0)。若大于1,则被除数大;若等于1,则两个数相等;若小于1,则除数大。④作差法:两个有理数相减。若大于0,则被减数大;若等于0,则两个数相等;若小于0,则减数大。
1.2.6二次根式
1.2.6.1二次根式的定义:式子 ( ≥0)叫做二次根式。
1.2.6.2二次根式的运算性质:① ( ≥0, ≥0)② ( ≥0, >0)
1.2.6.3最简二次根式:满足下列两个条件的二次根式叫做最简二次根式:①被开方数的因数是整数,因式是整式②被开方数中不含能开得尽的因数或因式
1.2.6.4分母有理化定义:在分母含有根式的式子中,把分母中的根号划去的过程叫做分母有理化。
1.2.6.5二次根式的混合运算:应按顺序先做乘方运算,再做乘除运算,最后做加减运算;若有括号,应按小、中、大括号的顺序进行运算。
二、代数式
2.1代数式
2.1.1代数式的定义:用运算符号把数或字母连接而成的式子叫做代数式。
2.1.2代数式的分类:代数式分为有理式和无理式,有理式又可以分为整式和分式,而整式又可以分为单项式和多项式。
2.1.3列代数式的定义:把问题中与数量有关的词语,用含有数、字母和运算符号的式子表示出来,就是列代数式。
2.1.4代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值。
2.2整式
2.2.1整式的概念
2.2.1.1单项式:只含有数字与字母乘积的代数式叫单项式(单独的一个数或字母也是单项式)。其中,数字因式叫做单项式的系数,单项式中所有的字母的指数的和叫做这个单项式的次数。
2.2.1.2多项式:几个单项式的和叫做多项式。多项式中的每一个单项式叫做多项式的项,其中不含字母的项叫做常数项。
2.2.1.3多项式的次数:多项式中系数最高项的次数叫做多项式的次数。
2.2.1.4降(升)幂排列:把一个多项式按某一字母的指数从大(小)到小(大)的顺序排列起来。
2.2.1.5整式的定义:单项式和多项式的统称。
2.2.1.6同类项的定义:所含字母相同,并且相同字母的次数也相同的项叫做同类项。
2.2.1.7合并同类项:把多项式中同类项合成一项的过程叫做合并同类项。
2.2.1.8合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。
2.2.2整式的运算
2.2.2.1整式的加减法计算法则:先去括号,再合并同类项。
2.2.2.2整式的乘除法计算法则:①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即 (m,n是正整数)②同底数幂的除法法则:同底数幂相除,底数不变,指数相减即 ( ≠0, , 是正整数, > )③幂的乘方法则:幂的乘方,底数不变,指数相乘,即 (m,n是正整数)④积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,即 ( 是正整数)。
2.2.2.3单项式乘以单项式的法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式中只含有的字母,则连同它的指数作为积的一个因式。(在计算系数时,应先确定符号,再计算绝对值,当系数为-1时,只须在结果的最前面写上“-”)
2.2.2.4单项式乘以多项式的法则:用单项式乘以多项式的每一项,再把所得的积相加。
2.2.2.5单项式除以单项式的运算法则:一般地,单项式相除,把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
2.2.2.6多项式除以单项式的运算法则:一般地,多项式除以单项式,先把这个多项式的每一项分别除以这个单项式,再把所得的商相加。
2.2.2.7多项式乘以多项式的法则:先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。
2.2.2.8平方差公式:两个数的和与这两个数的差的积等于这两个数的平方差,即 (注意事项:公式中的 , 所代表的内容具有广泛性,可以表示数字,也可以表示单项式或多项式)
2.2.2.9完全平方公式:两个数和(或差)的平方等于它们的平方和,加上(或减去)它们积的2倍,即: (注意事项:公式中的a,b所代表的内容具有广泛性,可以表示数字,也可以表示单项式或多项式)
2.2.2.10立方和与立方差公式:两数和(或差)乘以它们的平方和与它们积的差(或和),等于这两个数的立方和(或立方差),即
2.2.2.11其他乘法公式:
①
②
2.2.3因式分解
2.2.3.1因式分解的定义:把一个多项式化成几个单项式的积的形式,叫做多项式的因式分解。
2.2.3.2因式分解的注意事项:因式分解要分解到不能再分解为止;因式分解与整式乘法互为逆运算。
2.2.3.3公因式的定义:一个多项式的各项都含有的相同的因式叫做这个多项式各项的公因式。
2.2.3.4分解因式的方法:①提取公因式法:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种因式分解叫做提取公因式法。即: ②运用公式法:反用乘法公式,可以把某些多项式分解因式,这种方法叫做运用公式法(常用的有: 和 )③分组分解法:利用分组来分解因式的方法叫做分组分解法④十字相乘法:将 型的二次三项式分解为 。
2.3分式
2.3.1分式的概念
2.3.1.1分式的定义:A,B表示两个整式,如果B中含有字母,式子 就叫做分式。其中A叫做分式的分子,B叫做分式的分母。
2.3.1.2 有理式的定义:整式和分式的统称。
2.3.1.3 繁分式的定义:分式的分子或分母中含有分式,这样的分式叫做繁分式。
2.3.1.4最简分式的定义:当一个分式的分子和分母没有公因式的时候就叫做最简分式。
2.3.1.5约分的定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去的过程就叫做约分。
2.3.1.6通分的定义:把异分母的分式化成和原来的分式相等的同分母的分式的过程叫做通分。
2.3.2分式的基本性质
2.3.2.1分式的基本性质:分式的分子分母都同时乘以或同时除以一个不为0的整式,分式的值不变,即
2.3.2.2分式的符号法则:分式的分子、分母和分式本身的符号,改变其中任何两个,分式的值都不变,即
2.3.3分式的运算
2.3.2.3 分式的加减法计算法则:同分母分式相加减,分母不变,分子相加减,即 ;异分母分式相加减,先通分成同分母的分式,再按同分母的分式相加减的法则进行计算,即 .
2.3.2.4分式的乘除法计算法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母,即 ;分式除以分式,把除式的分子分母颠倒位置后,再按分式的乘法法则进行计算。
2.3.2.5分式的混合运算:①先算乘方(即:三级运算),再算乘除(即:二级运算),最后算加减(即:一级运算)②如果是同级运算,则按从左到右的运算顺序计算③如果有括号,先算小括号,再算中括号,最后算大括号。
三、方程与方程组
3.1方程与方程组
3.1.1基本概念
3.1.1.1等式的定义:用等号表示相等关系的式子叫做等式。
3.1.1.2等式的性质:①等式两边同时加上或同时减去一个数或一个整式,所得结果仍是等式②等式两边同时乘以或同时除以一个不为0的数,所得结果仍为等式。
3.1.1.3方程的定义:含有未知数的等式叫做方程。
3.1.1.4方程的解:使方程两边相等的未知数的值叫做方程的解,只有一个未知数的方程的解也叫做方程的根。
3.1.1.5解方程的定义:求得方程的解的过程叫做解方程。
3.1.1.6一元一次方程:含有一个未知数,并且未知数的次数是1,系数不等于0的方程叫做一元一次方程,它的标准形式是ax+b=0,其中x是未知数,它有唯一解, (a≠0)
3.1.1.7二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。
3.1.1.8一元二次方程:只含有一个未知数,并且未知数的最高次数是2,这样的方程叫做一元二次方程,一般形式是ax+bx+c=0,其中ax称为二次项,bx叫做一次项,c叫做常数项。
3.1.1.9一元二次方程的解法:①直接开方法②配方法③求根公式法④因式分解法。
3.1.1.11一元二次方程根的判别式: 叫做一元二次方程ax+bx+c=0的判别式。
3.1.1.12一元二次方程根与系数的关系:设 、 是方程ax+bx+c=0(a≠0)的两个根,那么 + = , = ,根与系数关系的逆命题也成立。
3.1.1.13一元二次方程根的符号:设一元二次方根ax+bx+c=0(a≠0)的两根为 、 。当 ≥0且 >0, + >0,两根同正号;当 ≥0,且 >0, + <0,两根同负号; <0时,两根异号 + >0时,正根的绝对值较大, + <0时,负根的绝对值较大。
3.1.1.14整式方程:方程两边都是关于未知数的整式,这样的方程叫做整式方程。
3.1.1.15分式方程:分母里含有未知数的方程叫做分式方程。
3.1.1.16增根:在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的增根(使方程的分母为0的根),因此解分式方程时要验根。验根的方法通常是把求得整式方程的根代入最简公分母,使最简公分母为0的就是增根。
3.1.1.17二元一次方程:含有两个未知数并且含有未知数的项的次数是1,这样的方程叫做二元一次方程(注意:对于未知数来说,构成方程的代数式必须是整式)。
3.1.1.18二元一次方程的解:满足二元一次方程的一对未知数的值叫做二元一次方程的一个解。
3.1.1.19二元一次方程的解法:给其中一个未知数一个确定值,解关于另一个未知数的方程,得出这个未知数的值,由此就得到二元一次方程的一个解。
3.1.1.20二元一次方程组:两个二元一次方程合成一组就叫做二元一次方程组。
3.1.1.21二元一次方程组的解:构成二元一次方程的公共解叫做二元一次方程组的解。
3.1.1.22二元一次方程组的解法:解二元一次方程组的基本思想就是消去一个未知数转化成一元一次方程求解,消元的基本方法就是代入法和加减法。(①代入法:代入法的基本思想是方程组中的同一个未知数应该表示相同的值,所以一个方程中的某个未知数,可以用另一个方程中表示这个未知数的代数式来代替,从而就可以减少一个未知数,把二元一次方程组转化成一元一次方程。②加减法:加减法的基本思想是,根据等式的基本性质2,使两个方程中某一个未知数的系数绝对值相等,然后根据等式的基本性质1,将两个方程相加减,从而可以消去一个未知数,转化为一元一次方程。)
3.1.1.23三元一次方程组:含有三个未知数,并且每个方程的未知项次数都是1,这样的方程叫做三元一次方程组。
3.1.1.24三元一次方程组的解法:解三元一次方程组的基本思想是消去一个未知数转化成二元一次方程组,再按照二元一次方程组的解法来解。
3.2列方程(方程组)解应用题
3.2.1基本概念
3.2.1.1列方程解应用题的一般步骤:审题、设元、列方程、解方程、检验、写答。
3.2.1.2设未知数的方法:①直接设元;②间接设元;③设辅助未知数。
3.2.2常见的应用题
3.2.2.1行程问题:行程问题可以分为相遇问题、追及问题、环形问题、水(风)流四类问题。基本关系式:路程=速度×时间( )。
3.2.2.2工程问题:基本关系式:工作量=工作时间×工作效率。
3.2.2.3数字问题:(了解几个相关名词的概念,如连续自然数、连续整数、连续奇数、连续偶数,并懂得多位数的几种表示方法)。
3.2.2.4增长率问题:基本关系式:①原产量+增产量=实际产量②增长率=增长数/基础数③实际产量=原产量(1+增长率)
3.2.2.5利润问题:基本关系式:利润=售价-进价。
3.2.2.6利率问题:(了解几个相关名词的概念,如:本金、利息、本息和、期数、利率)基本关系式:本息和=本金+利息,利息=本金×利率×期数。
3.2.2.7几何问题:常用的公式:长方形、正方形、三角形、梯形、园的面积和周长公式。
3.2.2.8浓度问题:基本关系式:浓度=溶质质量/溶液质量×100%
3.2.2.9其他问题:比例分配问题、鸡兔同笼问题、函数应用题…
四、不等式与不等式组
4.1不等式
4.1.1基本概念
4.1.1.1不等式:用不等号表示不等关系的式子叫做不等式。
4.1.1.2 不等号:常用的不等号有:①<②>③≠④≤⑤≥
4.1.1.3不等式的性质:①不等式两边同时加上(或减去)一个整式,不等号的方向不变,即若 > ,则 > ②不等式的两边同时乘以(或同时除以)一个正数,不等号的方向不变③不等式的两边同时乘以(或同时除以)一个负数,不等式的符号改变。
4.1.1.4不等式的解:使得不等式成立的未知数的值叫做不等式的解。
4.1.1.5不等式的解集:一个不等式的所有解组成这个不等式的解集。
4.1.1.6解不等式的基本方法:①去分母②去括号③移项④合并同类项⑤化系数为1
4.2不等式组
4.2.1基本概念
4.2.1.1一元一次不等式组:由几个一元一次不等式组成的不等式组叫做一元一次不等式组。
4.2.1.2一元一次不等式组的解集:几个一元一次不等式的解集的公共部分叫做一元一次不等式组的解集。
4.2.1.3解不等式组:求不等式的解集的过程叫做解不等式。
五、函数
5.1平面直角坐标系 变量与函数
5.1.1基本概念
5.1.1.1平面直角坐标系:为了用一对实数表示平面内一点,在平面内画两条互相垂直的数轴,组成平面直角坐标系。其中,水平的数轴叫做 轴或者横轴,取向右为正方向;铅直的数轴叫做 轴或者纵轴,取向上为正方向,两个数轴相交于点O,点O叫做坐标原点。
5.1.1.2象限:横轴和纵轴把平面分为四个象限,其中右上角的为第一象限,左上角的为第二象限,左下角的为第三象限,右下角的为第四象限
5.1.1.3点的坐标的表示方法:按横坐标在前,纵坐标在后的顺序书写,中间用逗号隔开。
5.1.1.4常量和变量:在某一变化过程中,数值保持不变的量叫做常量,可以取不同值的量叫做变量
5.1.1.5函数:在某个变化过程中,有两个变量 和 ,如果对于x在某一范围内的每一个确定的值, 有惟一确定的值和它对应,那么就把 叫做 的函数,其中, 为因变量, 为自变量。
5.1.1.6自变量的取值范围:如果用解析式表示函数,那么自变量的取值范围就是使解析式有意义的自变量取值的全体。
5.1.1.7函数值:对于自变量在取值范围内的一个确定的值,例如 = ,函数有惟一确定的对应值,这个对应值叫做 = 时的函数值,简称函数值
5.1.1.8函数的表示方法:①解析法:把两个变量的对应关系用数学式子来表示②列表发:把两个变量的对应关系用列表的方法表示③图像法:把两个变量的对应关系在平面直角坐标系内用图像表示。(通常将以上三种方法结合起来运用)
5.1.1.9由函数解析式画图像的步骤:列表、描点、连线。
5.2正比例函数
5.2.1基本概念
5.2.1.1正比例函数的定义:形如 ( ≠0)的函数叫做正比例函数。
5.2.1.2 正比例函数的图像:正比例函数的图像是经过坐标原点的一条直线。
5.2.1.3 正比例函数的性质:①当 >0时, 随 的增大而增大②当 <0时, 随 的增大而减小。
5.3一次函数
5.3.1基本概念
5.3.1.1 一次函数的定义:形如 ( , 是常数)的函数叫做一次函数。
5.3.1.2 一次函数的图像:一次函数的图像是一条与直线 ( ≠0)平行的一条直线。
5.3.1.3一次函数的性质:
①当 >0时,y随x的增大而增大
当 >0时,图像经过一二三象限
当 <0时,图像经过一三四象限
当 =0时,为正比例函数
②当 <0时,y随x的增大而减小。
当 >0时,图像经过一二四象限
当 <0时,图像经过二三四象限
当 =0时,为正比例函数
5.4反比例函数
5.4.1基本概念
5.4.1.1 反比例函数的定义:形如 的函数叫做反比例函数。
5.4.1.2 反比例函数的图像:反比例函数的图像是双曲线。
5.4.1.3 反比例函数的性质:①当 >0时,在一、三象限内, 随x增大而减小②当 <0时,在二、四象限内, 随 的增大而增大。
5.5二次函数
5.5.1基本概念
5.5.1.1二次函数的定义:形如 ( , , 为常数, ≠0)的函数叫做二次函数。
5.5.1.2二次函数的图像:是对称轴平行与 轴的抛物线。
5.5.1.3二次函数的性质:①抛物线 ( ≠0)的顶点坐标是 ,对称轴是直线 ②当 >0时,在 时,函数有最小值 ;当 <0时,在 时,函数有最大值 ③当 时,抛物线 ( ≠0)与x轴有两个交点;当 <0时,抛物线与x轴没有交点;当 =0时,抛物线与x轴有一个交点。④当 >0时,抛物线开口向上,当a<0时抛物线开口向下⑤当 >0时,交点在y轴的正半轴,当c<0时,交点在y轴的负半轴,当 =0时,交点在坐标原点⑦当a、b同号时, <0,抛物线的对称轴在y轴的左侧,当 、 异号时, >0,抛物线的对称轴在 轴的右侧,当 =0时,抛物线的对称轴就是 轴。
5.5.1.4二次函数解析式的三种形式:①一般式;②交点式;③顶点式。
六、相交线与平行线
6.1相交线
6.1.1基本概念
6.1.1.1对等角的定义:两条直线相交成四个角,其中没有公共边的两个角叫做对顶角。
6.1.1.2对顶角的性质:对顶角相等。
6.1.1.3对顶角的定义与性质的关系:对顶角的定义揭示了两个角的关系,而对顶角的性质揭示了对顶角的数量关系。只有用定义判定出两个角是对顶角才能根据角的性质得出这两个角相等。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询