展开全部
lim(n->无穷) 1/n =0
lim(n->无穷) (1/n)cos(nx/n) =0
f(t)= cos(tx)
f(i/n)=cos(ix/n)
lim(n->无穷) (1/n){ 1+cos(x/n)+...+cos[(n-1)x/n] }
=lim(n->无穷) (1/n){ cos(x/n)+...+cos[(n-1)x/n] + cos(nx/n) }
=lim(n->无穷) (1/n) ∑(i:1->n) cos(ix/n)
=∫(0->1) cos(xt) dt
=(1/x)∫(0->1) cos(xt) dxt
=(1/x)[sin(xt)]|(0->1)
=(1/x) sinx
lim(n->无穷) (1/n)cos(nx/n) =0
f(t)= cos(tx)
f(i/n)=cos(ix/n)
lim(n->无穷) (1/n){ 1+cos(x/n)+...+cos[(n-1)x/n] }
=lim(n->无穷) (1/n){ cos(x/n)+...+cos[(n-1)x/n] + cos(nx/n) }
=lim(n->无穷) (1/n) ∑(i:1->n) cos(ix/n)
=∫(0->1) cos(xt) dt
=(1/x)∫(0->1) cos(xt) dxt
=(1/x)[sin(xt)]|(0->1)
=(1/x) sinx
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询