椭圆的离心率公式是什么?

 我来答
小知爱综合
高能答主

2021-12-24 · 善于综合学习,乐于助人
小知爱综合
采纳数:13 获赞数:1295

向TA提问 私信TA
展开全部

离心率=(ra-rp)/(ra+rp),ra指远点距离,rp指近点距离。

椭圆的离心率(偏心率)(eccentricity)。离心率统一定义是动点到焦点的距离和动点到准线的距离之比。

计算方法:

离心率统一定义是动点到左(右)焦点的距离和动点到左(右)准线的距离之比。椭圆扁平程度的一种量度,离心率定义为椭圆两焦点间的距离和长轴长度的比值,用e表示,即e=c/a (c,半焦距;a,长半轴)椭圆的离心率可以形象地理解为,在椭圆的长轴不变的前提下,两个焦点离开中心的程度。离心率=(ra-rp)/(ra+rp),ra指远点距离,rp指近点距离。

椭圆简介:

在数学中,椭圆是围绕两个焦点的平面中的曲线,使得对于曲线上的每个点,到两个焦点的距离之和是恒定的。因此,它是圆的概括,其是具有两个焦点在相同位置处的特殊类型的椭圆。椭圆的形状(如何“伸长”)由其偏心度表示,对于椭圆可以是从0(圆的极限情况)到任意接近但小于1的任何数字。

椭圆是封闭式圆锥截面:由锥体与平面相交的平面曲线。椭圆与其他两种形式的圆锥截面有很多相似之处:抛物线和双曲线,两者都是开放的和无界的。圆柱体的横截面为椭圆形,除非该截面平行于圆柱体的轴线。

椭圆也可以被定义为一组点,使得曲线上的每个点的距离与给定点(称为焦点)的距离与曲线上的相同点的距离的比值给定行(称为directrix)是一个常数。该比率称为椭圆的偏心率。

长沙永乐康仪器
2024-03-19 广告
椭圆焦距2c。当P正好在y轴上,F2P仍然大於2c时,那麼不可能有这样的P满足题意。所以从这个突破点,这时a=2c已经是a的最大极限。a<=2cc/a>=1/2又有椭圆离心率小於1,等於1是抛物线,大於1是双曲线。所以选C。其实... 点击进入详情页
本回答由长沙永乐康仪器提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式