常用的泰勒公式展开式为:Fx=fx0/0!+f(x0)/1!(x-x0)+f(x0)/2!(x-x0)+...+f(x0)/n!(x-x0)n次方+Rn(x)。
其中,表示f(x)的n阶导数,等号后的多项式称为函数f(x)在x0处的泰勒展开式,剩余的Rn(x)是泰勒公式的余项,是(x-x0)n的高阶无穷小。
泰勒公式的余项有两类:
一类是定性的皮亚诺余项。
另一类是定量的拉格朗日余项。这两类余项本质相同,但是作用不同。一般来说,当不需要定量讨论余项时,可用皮亚诺余项(如求未定式极限及估计无穷小阶数等问题);当需要定量讨论余项时,要用拉格朗日余项(如利用泰勒公式近似计算函数值)。