3个回答
展开全部
将 b^2-bc-2c^2=0 变形为
(b+c)(b-2c)=0
因 b、c均为三角形的边,b+c不可能为零
故 b-2c=0
即 b=2c
将cosA=7/8、a=根号6带入三角形的余弦定理a^2=b^2+c^2-2bc cosA
得:b^2+c^2-7/4 bc =6 ----------(*)
再将 b=2c带入(*)式 可得:
c=2
b=4
又由cosA=7/8 可得:
sinA=根号15 /8
所以,三角形ABC的面积是:S=1/2 bc sinA=根号15 /2
(b+c)(b-2c)=0
因 b、c均为三角形的边,b+c不可能为零
故 b-2c=0
即 b=2c
将cosA=7/8、a=根号6带入三角形的余弦定理a^2=b^2+c^2-2bc cosA
得:b^2+c^2-7/4 bc =6 ----------(*)
再将 b=2c带入(*)式 可得:
c=2
b=4
又由cosA=7/8 可得:
sinA=根号15 /8
所以,三角形ABC的面积是:S=1/2 bc sinA=根号15 /2
展开全部
b²-bc-2c²=0
(b+c)(b-2c)=0
b+c不等于0,所以b=2c
根据余弦定理
b²+c²-2bc*cosA=a²
4c²+c²-4c²*(7/8)=6
5c²-(7c²/2)=6
3c²/2=6,c²=4,c=2,b=2c=4
sinA=(根号15)/8
三角形面积S
=(1/2)*b*c*sinA
=(1/2)*8*(根号15)/8
=(根号15)/2
(b+c)(b-2c)=0
b+c不等于0,所以b=2c
根据余弦定理
b²+c²-2bc*cosA=a²
4c²+c²-4c²*(7/8)=6
5c²-(7c²/2)=6
3c²/2=6,c²=4,c=2,b=2c=4
sinA=(根号15)/8
三角形面积S
=(1/2)*b*c*sinA
=(1/2)*8*(根号15)/8
=(根号15)/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
b²-bc-2c²=0
即(b+c)(b-2c)=0
所以b=2c
根据余弦定理:a^2=b^2+c^2-2bccoaA
即4c^2+c^2-2*2c^2*7/8=6
c^2=4
S△ABC=1/2*bcsinA
sinA=根号(1-49/64)=根号15/8
S△ABC=c^2*根号15/8=2*4*根号15/8=(根号15 )/8
即(b+c)(b-2c)=0
所以b=2c
根据余弦定理:a^2=b^2+c^2-2bccoaA
即4c^2+c^2-2*2c^2*7/8=6
c^2=4
S△ABC=1/2*bcsinA
sinA=根号(1-49/64)=根号15/8
S△ABC=c^2*根号15/8=2*4*根号15/8=(根号15 )/8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询