实对称矩阵相同特征值对应的特征向量正交吗?
1个回答
展开全部
实对称矩阵不同特征值的特征向量一定是正交的。实对称矩阵同一特征值的不同特征向量线性无关。结论很明显,书上解释得也很清楚,我猜题主问这个问题是对于下面这个问题的疑惑。这里说的是存在,并没有说对于实对称矩阵A的特征值分解,得到的U一定是正交矩阵。而是可以采用一些正交化方法使得U成为正交矩阵,就是说即使U不是正交矩阵,但U的各列向量线性无关。
矩阵:
在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询