x与sinx为什么是等价无穷小?

 我来答
帐号已注销
2021-12-10 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:168万
展开全部

x与sinx是等价无穷小的原因:lim(x→0)sinx/x=1,这就说明x→0时sinx与x是等价无穷小,因此可以代换。

泰勒公示展开sinx=x-x^3/3!+x^5/5!-x^7/7!+x^9/9!+Rn(x),x趋于0时只剩下x项,其余都是高阶小量,sinx和x等价无穷小,洛必达法则,sinx/x上下分别求导后为cosx/1,x等于0时该值为1,所以sinx和x等价无穷小。

等价无穷小替换

是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。求极限时,使用等价无穷小的条件:被代换的量,在取极限的时候极限值为0;被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式