怎样证明根号 3 是无理数?

 我来答
百度网友5f9263f
2021-12-12 · TA获得超过3113个赞
知道答主
回答量:31
采纳率:100%
帮助的人:8500
展开全部

方法1:假设根符号3=P/Q(P和Q是互质整数),那么P^2=3Q^2。把p^2除以3。因为3是质数,所以把P除以3。假设P=3T,那么q^2=3T^2,那么q除以3。因此,P和Q有一个公约数3,它是与P和Q相矛盾的互质,所以根3是一个无理数
方法2:设x=根3,则方程x^2=3。假设x^2=3有一个有理数解x=P/Q(P和Q是互质整数),根据牛顿的有理根定理,P除以3,Q除以1,所以P=1或3,Q=1,所以x=1或3。x=1或3不是方程x^2=3的根,所以这是矛盾的,因此根号3是个无理数
方法3:设x=根号3=P/Q,(P,Q)=1,所以有一个整数s,t,所以PS+QT=1。根3=根3*1=根3(PS+QT)=(√ 3P)s+(√ 3Q)t=3qs+PT是一个整数,所以这是矛盾的,因此根号3是个无理数

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式