为什么可导不一定可微?
2个回答
展开全部
因为该函数可能是多元函数,对多元函数来讲,可微是可偏导的充分不必要条件,即在某一点可求偏导并不一定能推出在这一点可微。
对于多元函数而言,某处可微意味着此处的每个方向上都可以进行线性近似,而某处可导最少只需要一个方向上可以进行线性近似。
函数可导的充要条件:
函数在该点连续且左导数、右导数都存在并相等。函数可导与连续的关系定理:若函数f(x)在x0处可导,则必在点x0处连续。上述定理说明:函数可导则函数连续;函数连续不一定可导;不连续的函数一定不可导。
在微积分学中,一个实变量函数是可导函数,若其在定义域中每一点导数存在。直观上说,函数图像在其定义域每一点处是相对平滑的,不包含任何尖点、断点。
以上内容参考:百度百科-可导
以上内容参考:百度百科-可微
中智咨询
2024-08-28 广告
2024-08-28 广告
在当今竞争激烈的商业环境中,企业需要不断提高自身的竞争力,以保持市场份额和增加利润。通过人效提升,企业可以更有效地利用有限的资源,提高生产力和效益,从而实现盈利目标。中智咨询提供全方位的组织人效评价与诊断、人效提升方案等数据和管理咨询服务。...
点击进入详情页
本回答由中智咨询提供
展开全部
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询