a的伴随矩阵的行列式的值是什么?

 我来答
热爱生活的Tong
高能答主

2021-12-09 · 有什么不懂的尽管问我
知道小有建树答主
回答量:812
采纳率:100%
帮助的人:15万
展开全部

a的伴随矩阵的行列式值是:

│A*│与│A│的关系是

│A*│=│A│^(n-1)

证明:A*=|A|A^(-1)

│A*│=|│A│*A^(-1)|

│A*│=│A│^(n)*|A^(-1)|

│A*│=│A│^(n)*|A|^(-1)

行列式最初发明的时候就是用于解线性方程,矩阵很明显,就是用来表示线性方程的系数。根据维基百科(行列式)「行列式的概念最初是伴随着方程组的求解而发展起来的。最初的雏形由日本数学家关孝和与德国数学家戈特弗里德·莱布尼茨各自独立得出,时间大致相同。」

(1)行列式是一个函数,但是这是个废话——我们要知道它对应的值究竟是什么——具体的说,这个函数的返回值是一个体积。例如:2 x 2 的行列式明显就是一个平行四边形的有向面积,具体怎么理解,还是看维基百科。这样,你就可以理解,为什么行列式如果有两行相等,得到的值等于零了,因为根本张不开,体积当然为 0。

(2)矩阵用来表示线性变换。一个矩阵,右乘一个向量 v,得到一个向量 u,这个矩阵就完成了从 v 到 u 的变换。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式