1个回答
展开全部
lim(x->0+) sin(x/2).lnx
=lim(x->0+) lnx/csc(x/2)
洛必达
=lim(x->0+) (1/x)/[-(1/2)csc(x/2).cot(x/2)]
=lim(x->0+) (1/x).sin(x/2)/[-(1/2)cot(x/2)]
x->0, sin(x/2) 等价于 x/2
=lim(x->0+) (1/x).(x/2)/[-(1/2)cot(x/2)]
=lim(x->0+) -1/cot(x/2)
=0
=lim(x->0+) lnx/csc(x/2)
洛必达
=lim(x->0+) (1/x)/[-(1/2)csc(x/2).cot(x/2)]
=lim(x->0+) (1/x).sin(x/2)/[-(1/2)cot(x/2)]
x->0, sin(x/2) 等价于 x/2
=lim(x->0+) (1/x).(x/2)/[-(1/2)cot(x/2)]
=lim(x->0+) -1/cot(x/2)
=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询