函数可导,是不是函数一定连续?

 我来答
教育小百科达人
2022-12-24 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:459万
展开全部

具体回答如图:

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

扩展资料:

设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δy=f(x0+Δx)-f(x0);如果Δy与Δx之比当Δx→0时极限存在,则称函数y=f(x)在点x0处可导。

函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。

参考资料来源:百度百科--导数

百度网友69b8c3a8b
2023-01-07 · TA获得超过197个赞
知道小有建树答主
回答量:3179
采纳率:89%
帮助的人:192万
展开全部
函数可导,是不是函数一定连续?

不一定,函数可以是非连续的。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
在彼中阿123
2023-05-22
知道答主
回答量:36
采纳率:100%
帮助的人:6.5万
展开全部
是的,可导必连续
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式