定积分∫(上限π/3,下限π/4)x/(sin^2x)dx
1个回答
展开全部
原式=∫x*csc^2x dx(下限π/4,上限π/3)
=-(1/2)*∫xd(cot2x)(下限π/4,上限π/3)
=-(1/2)*xcot2x+(1/2)*∫cot2xdx(下限π/4,上限π/3)
=-(1/2)*(π/3)*cot(2π/3)+(1/4)*∫(cos2x/sin2x)d(2x)(下限π/4,上限π/3)
=√3π/18+(1/4)*∫d(sin2x)/sin2x(下限π/4,上限π/3)
=√3π/18+(1/4)*ln|sin2x|(下限π/4,上限π/3)
=√3π/18+(1/4)*ln(√3/2)=√3π/18+(ln3)/8-(ln2)/4
=-(1/2)*∫xd(cot2x)(下限π/4,上限π/3)
=-(1/2)*xcot2x+(1/2)*∫cot2xdx(下限π/4,上限π/3)
=-(1/2)*(π/3)*cot(2π/3)+(1/4)*∫(cos2x/sin2x)d(2x)(下限π/4,上限π/3)
=√3π/18+(1/4)*∫d(sin2x)/sin2x(下限π/4,上限π/3)
=√3π/18+(1/4)*ln|sin2x|(下限π/4,上限π/3)
=√3π/18+(1/4)*ln(√3/2)=√3π/18+(ln3)/8-(ln2)/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询