设A为3阶方阵,且A的行列式丨A丨=a≠0,而A*是A的伴随矩阵,则丨A*丨等于多少? 麻烦写下计算过程,谢谢。
1个回答
展开全部
|^根据伴bai随矩阵的性质可有:AA*=|A| E (E为单位矩阵)
则两du边求行列式有:|zhiA| |A*|=|A| ^3=a^3
则:丨A*丨=a^2
一般的,dao对于n阶方阵A,若丨A丨=a,则有丨A*丨=a^(n-1)
方阵是古代军队作战时采用的一种队形,是把军队在野外开阔地上排列成方形阵式。远古方阵由前军、中军和后军相互嵌套排列而成,方阵平面呈现“回”字形状,反映出远古观念中的一种政治地理结构,来源于“天圆地方”的宇宙观。
中国军阵出现在距今四千五百年前,反映了古老的“天圆地方”观念。中国远古军阵有圆阵和方阵两种基本阵形,两种阵形也可以随时转化,如文献提到的“化圆为方”、“化方为圆”。相比较而言,方阵是比圆阵更基本的阵式。方阵由军队的直线队列转化而来。在向既定战场开进的途中,军队分为前、中、后三军,分别由太子、王者、庶子统领,三军首尾相接,依次行军,其队形为“一”字形。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询