两个随机变量的方差是怎么得到的?
1个回答
展开全部
若两个随机变量X和Y相互独立,那zhidao么两个随机变量的和的方差等于各自方差的和:
D(X+Y) = D(X)+D(Y)
这是因为:
D(X+Y) = E{(X+Y)-[E(X)+E(Y)]}^2
= E{[X-E(X)]+[Y-E(Y)]}^2
= E[X-E(X)]^2 + 2E{[X-E(X)][Y-E(Y)]} + E[Y-E(Y)]^2
= D(X) + D(Y) + 2E{[X-E(X)][Y-E(Y)]}
= D(X) + D(Y)
这是因为 X、Y相互独立,E{[X-E(X)][Y-E(Y)]}=0
因此:D(X+Y) = D(X)+D(Y)
扩展资料:
对于连续型随机变量X,若其定义域为(a,b),概率密度函数为f(x),连续型随机变量X方差计算公式:
D(X)=(x-μ)^2 f(x) dx
方差刻画了随机变量的取值对于其数学期望的离散程度。(标准差、方差越大,离散程度越大)
若X的取值比较集中,则方差D(X)较小,若X的取值比较分散,则方差D(X)较大。
因此,D(X)是刻画X取值分散程度的一个量,它是衡量取值分散程度的一个尺度。
参考资料来源:百度百科-方差
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询