矩阵A有n个线性无关的特征向量,有什么意义?

 我来答
亦是如此
高粉答主

2022-09-13 · 往前看,不要回头。
亦是如此
采纳数:6378 获赞数:544604

向TA提问 私信TA
展开全部

因为 A^2=A,所以A的特征值只能是0或1,且有A(A-E) = 0。

所以r(A) + r(A-E) <= n。

而r(A) + r(A-E) >= r(A-A+E) = r(E) = n。

所以r(A) + r(A-E) = n。

所以 AX=0 的基础解系与 (A-E)X=0 的基础解系含(n-r(A)) + (n-r(A-E)) = n 个向量。

这n个向量是A的分别属于特征值0与1的特征向量

所以A有n个线性无关的特征向量。

其他性质:

线性变换,转置。矩阵是线性变换的便利表达法,皆因矩阵乘法与及线性变换的合成有以下的连系:以 Rn 表示 n×1 矩阵(即长度为n的矢量)。对每个线性变换 f : Rn -> Rm 都存在唯一 m×n 矩阵 A 使得 f(x) = Ax 对所有 x &in; Rn。 这矩阵 A "代表了" 线性变换 f。 今另有 k×m 矩阵 B 代表线性变换 g : Rm -> Rk,则矩阵积 BA 代表了线性变换 g o f。

矩阵 A 代表的线性代数的映像的维数称为 A 的矩阵秩。矩阵秩亦是 A 的行(或列)生成空间的维数。m×n矩阵 A 的转置是由行列交换角式生成的 n×m 矩阵 Atr (亦纪作 AT 或 tA),即 Atr[i, j] = A[j, i] 对所有 i and j。若 A 代表某一线性变换则 Atr 表示其对偶算子。

转置有以下特性:(A + B)tr = Atr + Btr,(AB)tr = BtrAtr。注记矩阵可看成二阶张量, 因此张量可以认为是矩阵和向量的一种自然推广。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式