设n阶矩阵A满足A^2=A且A≠E,证明|A|=0

 我来答
新科技17
2022-09-04 · TA获得超过5907个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:75.2万
展开全部
设j是的一特征值,则有X,使得AX=jX.
而又有
A^2×X=A(AX)=A(jX)=j(AX)=j^2×X 因为A^2=A,故有:j^2×X=j×X即 j^2=j
求得 j=0 j=1
由A^2=A 有A^2-A-2E=-2E
因为E^2=E A×E=A
故上式化成
(A+E)×(A-2E)=-2E
从而E+A可逆
所以|A|=0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式