(0-1)x(arcsinx)²的定积分怎么算?
2个回答
展开全部
令 arcsinx = u, 则 x = sinu, dx = cosudu
I = ∫<0 ,1> x(arcsinx)² dx = (1/2)∫<0 , π/2> u^2sin2u du
= (-1/4)∫<0 , π/2> u^2dcos2u
= (-1/4)[u^2cos2u]<0 , π/2> - ∫<0 , π/2> 2ucos2udu]
= (-1/4)[-π^2/2 - ∫<0 , π/2> udsin2u]
= (-1/4)[-π^2/2 - [usin2u]<0 , π/2> + ∫<0 , π/2> sin2udu]
= (-1/4)[-π^2/2 - 0 - (1/2)[cos2u]<0 , π/2>]
= (-1/4)[-π^2/2 +1] = (1/8)(π^2-2)
I = ∫<0 ,1> x(arcsinx)² dx = (1/2)∫<0 , π/2> u^2sin2u du
= (-1/4)∫<0 , π/2> u^2dcos2u
= (-1/4)[u^2cos2u]<0 , π/2> - ∫<0 , π/2> 2ucos2udu]
= (-1/4)[-π^2/2 - ∫<0 , π/2> udsin2u]
= (-1/4)[-π^2/2 - [usin2u]<0 , π/2> + ∫<0 , π/2> sin2udu]
= (-1/4)[-π^2/2 - 0 - (1/2)[cos2u]<0 , π/2>]
= (-1/4)[-π^2/2 +1] = (1/8)(π^2-2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询