解这个微分方程 cos(x+y)dy=dx

 我来答
大沈他次苹0B
2022-09-03 · TA获得超过7326个赞
知道大有可为答主
回答量:3059
采纳率:100%
帮助的人:178万
展开全部
令x+y=z,则dz/dx=1+dy/dx=1+1/cos(x+y)=1+1/cosz=(cosz+1)/cosz故cosz/(1+cosz)*dz=dx[1-1/(1+cosz)]dz=dx{1-1/[(1+2cos^2 (z/2)-1}dz=dx[1-1/2*sec^2 (z/2)]dz=dx两边分别积分得z-tan(z/2)=x+C也即(x+y)-tan[(x+y)/...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式