求E(X+Y).设(X,Y)的概率密度为... 设(X,Y)的概率密度为 f(x,y)=e^(-y),0=
1个回答
展开全部
E(X+Y)=∫∫(x+y)f(x,y)dxdy
=∫∫xf(x,y)dxdy+∫∫yf(x,y)dxdy
=∫[0,1]xdx∫[0,+∞]e^(-y)dy+∫[0,1]dx∫[0,+∞]ye^(-y)dy
=1/2+1=3/2.
∫[0,+∞]ye^(-y)dy
=-ye^(-y)|[0,+∞]+∫[0,+∞]e^(-y)dy.[分部积分]
=0+[-e^(-y)]|[0,+∞]
1.
=∫∫xf(x,y)dxdy+∫∫yf(x,y)dxdy
=∫[0,1]xdx∫[0,+∞]e^(-y)dy+∫[0,1]dx∫[0,+∞]ye^(-y)dy
=1/2+1=3/2.
∫[0,+∞]ye^(-y)dy
=-ye^(-y)|[0,+∞]+∫[0,+∞]e^(-y)dy.[分部积分]
=0+[-e^(-y)]|[0,+∞]
1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询