超几何分布怎么理解
1个回答
展开全部
问题一:二项分布与超几何分布的区别 在已知概率(0.1),且是相互独立的前提下就要使用 二项分布。
对于超几何分布,是会存在上下限的,比如 5组每组10个 商品,那么每组合格最多为10,最少为0,询问其中合格(不合格)的可能性 便是超几何分布。
如果实在不好区分,就记住在已知概率的时候,用二项分布。
问题二:谈谈超几何分布和二项分布的区别和联系 在苏教版《数学选修2-3》的课本中,第二章《概率》的2.2节和2.4节分别介绍了两种离散型随机变量的概率分布,超几何分布(hyper-geometric distribution)与二项分布(binomial distribution)。通过实例,让学生认识模型所刻画的随机变量的共同特点,从而建立新的模型, 并能运用两模型解决一些实际问题。 然而在教学过程中,却发现学生不能准确地辨别所要解决的问题是属于超几何分布还是二项分布, 学生对这两模型的定义不能很好的理解, 一遇到含“取”或“摸”的题型, 就认为是超几何分布,不加分析, 随便滥用公式。 事实上, 超几何分布和二项分布确实有着密切的联系,但也有明显的区别。 课本对于超几何分布的定义是这样的:一般的,若一个随机变量
X的分布列为
,其中 ,则称X
服从超几何 分布,记为。其概率分布表为:
对于二项分布的定义是这样的:若随机变量X的分布
列为
,其中 则称X服 从参数为n,
p的二项分布,记为
。其概率分布表为:
超几何分布与二项分布都是取非负整数值的离散分布,表面上看,两种分布的概率求取有截然不同的表达式,但看它们的概率分布表,会发现构造上的相似点,如:随机变量X的取值都从0
连续变化到l ,对应概率和N,n,l三个值密切相关……可 见两种分布之间有着密切的联系。课本中对超几何分布的模型建立是这样的:若有N件产品,其中M件是废品,无返回地任意抽取n件,则其中恰有的废品件数X是服从超几何分布的。而对二项分布则使用比较容易理解的射击问题来建立模型。若将但超几何分布的概率模型改成:若有N件产品,其中M件是废品,有返回的任意抽取n件,则其中恰有的废品件数X是服从二项分布的。在这里,两种分布的差别就在于“有”与“无”的差别,只要将概率模型中的“无”改为“有”,或将“有”改为“无”,就可以实现两种分布之间的转化。“返回”和“不返回”就是两种分布转换的关键。
问题三:怎样区分二项分布和超几何分布 在苏教版《数学选修2-3》的课本中,第二章《概率》的2.2节和2.4节分别介绍了两种离散型随机变量的概率分布,超几何分布(hyper-geometric distribution)与二项分布(binomial distribution)。通过实例,让学生认识模型所刻画的随机变量的共同特点,从而建立新的模型, 并能运用两模型解决一些实际问题。 然而在教学过程中,却发现学生不能准确地辨别所要解决的问题是属于超几何分布还是二项分布, 学生对这两模型的定义不能很好的理解, 一遇到含“取”或“摸”的题型, 就认为是超几何分布,不加分析, 随便滥用公式。 事实上, 超几何分布和二项分布确实有着密切的联系,但也有明显的区别。 课本对于超几何分布的定义是这样的:一般的,若一个随机变量 X的分布列为 ,其中 ,则称X 服从超几何 分布,记为。其概率分布表为: 对于二项分布的定义是这样的:若随机变量X的分布 列为 ,其中 则称X服 从参数为n, p的二项分布,记为 。其概率分布表为: 超几何分布与二项分布都是取非负整数值的离散分布,表面上看,两种分布的概率求取有截然不同的表达式,但看它们的概率分布表,会发现构造上的相似点,如:随机变量X的取值都从0 连续变化到l ,对应概率和N,n,l三个值密切相关……可 见两种分布之间有着密切的联系。课本中对超几何分布的模型建立是这样的:若有N件产品,其中M件是废品,无返回地任意抽取n件,则其中恰有的废品件数X是服从超几何分布的。而对二项分布则使用比较容易理解的射击问题来建立模型。若将但超几何分布的概率模型改成:若有N件产品,其中M件是废品,有返回的任意抽取n件,则其中恰有的废品件数X是服从二项分布的。在这里,两种分布的差别就在于“有”与“无”的差别,只要将概率模型中的“无”改为“有”,或将“有”改为“无”,就可以实现两种分布之间的转化。“返回”和“不返回”就是两种分布转换的关键。
问题四:几何分布和超几何分布的区别和联系 在苏教版《数学选修2-3》的课本中,第二章《概率》的2.2节和2.4节分别介绍了两种离散型随机变量的概率分布,超几何分布(hyper-geometric distribution)与二项分布(binomial distribution)。通过实例,让学生认识模型所刻画的随机变量的共同特点,从而建立新的模型, 并能运用两模型解决一些实际问题。 然而在教学过程中,却发现学生不能准确地辨别所要解决的问题是属于超几何分布还是二项分布, 学生对这两模型的定义不能很好的理解, 一遇到含“取”或“摸”的题型, 就认为是超几何分布,不加分析, 随便滥用公式。 事实上, 超几何分布和二项分布确实有着密切的联系,但也有明显的区别。 课本对于超几何分布的定义是这样的:一般的,若一个随机变量
X的分布列为
,其中 ,则称X
服从超几何 分布,记为。其概率分布表为:
对于二项分布的定义是这样的:若随机变量X的分布
列为
,其中 则称X服 从参数为n,
p的二项分布,记为
。其概率分布表为:
超几何分布与二项分布都是取非负整数值的离散分布,表面上看,两种分布的概率求取有截然不同的表达式,但看它们的概率分布表,会发现构造上的相似点,如:随机变量X的取值都从0
连续变化到l ,对应概率和N,n,l三个值密切相关……可 见两种分布之间有着密切的联系。课本中对超几何分布的模型建立是这样的:若有N件产品,其中M件是废品,无返回地任意抽取n件,则其中恰有的废品件数X是服从超几何分布的。而对二项分布则使用比较容易理解的射击问题来建立模型。若将但超几何分布的概率模型改成:若有N件产品,其中M件是废品,有返回的任意抽取n件,则其中恰有的废品件数X是服从二项分布的。在这里,两种分布的差别就在于“有”与“无”的差别,只要将概率模型中的“无”改为“有”,或将“有”改为“无”,就可以实现两种分布之间的转化。“返回”和“不返回”就是两种分布转换的关键。
对于超几何分布,是会存在上下限的,比如 5组每组10个 商品,那么每组合格最多为10,最少为0,询问其中合格(不合格)的可能性 便是超几何分布。
如果实在不好区分,就记住在已知概率的时候,用二项分布。
问题二:谈谈超几何分布和二项分布的区别和联系 在苏教版《数学选修2-3》的课本中,第二章《概率》的2.2节和2.4节分别介绍了两种离散型随机变量的概率分布,超几何分布(hyper-geometric distribution)与二项分布(binomial distribution)。通过实例,让学生认识模型所刻画的随机变量的共同特点,从而建立新的模型, 并能运用两模型解决一些实际问题。 然而在教学过程中,却发现学生不能准确地辨别所要解决的问题是属于超几何分布还是二项分布, 学生对这两模型的定义不能很好的理解, 一遇到含“取”或“摸”的题型, 就认为是超几何分布,不加分析, 随便滥用公式。 事实上, 超几何分布和二项分布确实有着密切的联系,但也有明显的区别。 课本对于超几何分布的定义是这样的:一般的,若一个随机变量
X的分布列为
,其中 ,则称X
服从超几何 分布,记为。其概率分布表为:
对于二项分布的定义是这样的:若随机变量X的分布
列为
,其中 则称X服 从参数为n,
p的二项分布,记为
。其概率分布表为:
超几何分布与二项分布都是取非负整数值的离散分布,表面上看,两种分布的概率求取有截然不同的表达式,但看它们的概率分布表,会发现构造上的相似点,如:随机变量X的取值都从0
连续变化到l ,对应概率和N,n,l三个值密切相关……可 见两种分布之间有着密切的联系。课本中对超几何分布的模型建立是这样的:若有N件产品,其中M件是废品,无返回地任意抽取n件,则其中恰有的废品件数X是服从超几何分布的。而对二项分布则使用比较容易理解的射击问题来建立模型。若将但超几何分布的概率模型改成:若有N件产品,其中M件是废品,有返回的任意抽取n件,则其中恰有的废品件数X是服从二项分布的。在这里,两种分布的差别就在于“有”与“无”的差别,只要将概率模型中的“无”改为“有”,或将“有”改为“无”,就可以实现两种分布之间的转化。“返回”和“不返回”就是两种分布转换的关键。
问题三:怎样区分二项分布和超几何分布 在苏教版《数学选修2-3》的课本中,第二章《概率》的2.2节和2.4节分别介绍了两种离散型随机变量的概率分布,超几何分布(hyper-geometric distribution)与二项分布(binomial distribution)。通过实例,让学生认识模型所刻画的随机变量的共同特点,从而建立新的模型, 并能运用两模型解决一些实际问题。 然而在教学过程中,却发现学生不能准确地辨别所要解决的问题是属于超几何分布还是二项分布, 学生对这两模型的定义不能很好的理解, 一遇到含“取”或“摸”的题型, 就认为是超几何分布,不加分析, 随便滥用公式。 事实上, 超几何分布和二项分布确实有着密切的联系,但也有明显的区别。 课本对于超几何分布的定义是这样的:一般的,若一个随机变量 X的分布列为 ,其中 ,则称X 服从超几何 分布,记为。其概率分布表为: 对于二项分布的定义是这样的:若随机变量X的分布 列为 ,其中 则称X服 从参数为n, p的二项分布,记为 。其概率分布表为: 超几何分布与二项分布都是取非负整数值的离散分布,表面上看,两种分布的概率求取有截然不同的表达式,但看它们的概率分布表,会发现构造上的相似点,如:随机变量X的取值都从0 连续变化到l ,对应概率和N,n,l三个值密切相关……可 见两种分布之间有着密切的联系。课本中对超几何分布的模型建立是这样的:若有N件产品,其中M件是废品,无返回地任意抽取n件,则其中恰有的废品件数X是服从超几何分布的。而对二项分布则使用比较容易理解的射击问题来建立模型。若将但超几何分布的概率模型改成:若有N件产品,其中M件是废品,有返回的任意抽取n件,则其中恰有的废品件数X是服从二项分布的。在这里,两种分布的差别就在于“有”与“无”的差别,只要将概率模型中的“无”改为“有”,或将“有”改为“无”,就可以实现两种分布之间的转化。“返回”和“不返回”就是两种分布转换的关键。
问题四:几何分布和超几何分布的区别和联系 在苏教版《数学选修2-3》的课本中,第二章《概率》的2.2节和2.4节分别介绍了两种离散型随机变量的概率分布,超几何分布(hyper-geometric distribution)与二项分布(binomial distribution)。通过实例,让学生认识模型所刻画的随机变量的共同特点,从而建立新的模型, 并能运用两模型解决一些实际问题。 然而在教学过程中,却发现学生不能准确地辨别所要解决的问题是属于超几何分布还是二项分布, 学生对这两模型的定义不能很好的理解, 一遇到含“取”或“摸”的题型, 就认为是超几何分布,不加分析, 随便滥用公式。 事实上, 超几何分布和二项分布确实有着密切的联系,但也有明显的区别。 课本对于超几何分布的定义是这样的:一般的,若一个随机变量
X的分布列为
,其中 ,则称X
服从超几何 分布,记为。其概率分布表为:
对于二项分布的定义是这样的:若随机变量X的分布
列为
,其中 则称X服 从参数为n,
p的二项分布,记为
。其概率分布表为:
超几何分布与二项分布都是取非负整数值的离散分布,表面上看,两种分布的概率求取有截然不同的表达式,但看它们的概率分布表,会发现构造上的相似点,如:随机变量X的取值都从0
连续变化到l ,对应概率和N,n,l三个值密切相关……可 见两种分布之间有着密切的联系。课本中对超几何分布的模型建立是这样的:若有N件产品,其中M件是废品,无返回地任意抽取n件,则其中恰有的废品件数X是服从超几何分布的。而对二项分布则使用比较容易理解的射击问题来建立模型。若将但超几何分布的概率模型改成:若有N件产品,其中M件是废品,有返回的任意抽取n件,则其中恰有的废品件数X是服从二项分布的。在这里,两种分布的差别就在于“有”与“无”的差别,只要将概率模型中的“无”改为“有”,或将“有”改为“无”,就可以实现两种分布之间的转化。“返回”和“不返回”就是两种分布转换的关键。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询