函数ln(x+√(1+ x^2))在原点泰勒展开式?

 我来答
痕九天揽月
游戏玩家

2023-01-06 · 游戏我都懂点儿,问我就对了
知道小有建树答主
回答量:881
采纳率:100%
帮助的人:22.1万
展开全部

函数ln(x+√(1+x^2))在原点的泰勒展开式:

(ln(x+√(1+x^2)))'=1/(√(1+x^2))=(1+x^2)^(-1/2)

(1+x^2)^(-1/2)=1-(1/2)x^2+(-1/2)(-1/2-1)/2!(x^4)+(-1/2)(-1/2-1)(-1/2-2)/3!(x^6)+...

=1-(1/2)x^2+(-1/2)(-3/2)/2!(x^4)+(-1/2)(-3/2)(-5/2)/3!(x^6)+...

=1-(1/2)x^2+(-1)^2(1*2*3/2)(1/2^2)/2!(x^4)+(-1)^3*(1*2*3*4*5/(2*4))(1/2^3)/3!(x^6)+...

=1+∑(-1)^n*(2n-1)!/(2^(2n-1)(n-1)!n!)x^2n (-1<x<1)

∴ln(x+√(1+x^2))=x+∑(-1)^n*(2n-1)!/(2^(2n-1)(n-1)!n!(2n+1))x^(2n+1) (-1<x<1)


泰勒公式:

泰勒公式,是一个用函数在某点的信息描述其附近取值的公式。如果函数满足一定的条件,泰勒公式可以用函数在某一点的各阶导数值做系数构建一个多项式来近似表达这个函数。

泰勒公式得名于英国数学家布鲁克·泰勒,他在1712年的一封信里首次叙述了这个公式。泰勒公式是为了研究复杂函数性质时经常使用的近似方法之一,也是函数微分学的一项重要应用内容。 

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式