做数学题的方法
做数学题的方法
做数学题的方法,数学题对于很多人来说应该是非常难的题吧,有的人怎么做也做不来数学题,花了大量的时间精力也做不出来,那么有哪些做数学题的方法呢?赶紧阅读本篇文章,来了解一下吧。
做数学题的方法1
几何解题技巧考点:
这类题主要是考察咱们对空间物体的感觉,希望大家在平时学习过程中,多培养一些立体的、空间的感觉,将自己设身处地于那么一个立体的空间中去,这类题对文科生来说,难度都比较简单,但是对理科生来说,可能会比较复杂一些,特别是在二面角的求法上,对理科生来说是一个巨大的挑战,它需要理科生能对两个面夹角培养出感情来,这样辅助线的做法以及边长的求法就变得如此之简单了。这种题型分为两类:第一类就是证明题,也就是证明平行(线面平行、面面平行),第二类就是证明垂直(线线垂直、线面垂直、面面垂直);第二就是计算题,包括棱锥体的体积公式计算、点到面的距离、有关二面角的计算(理科生掌握)
证线面平行如直线与面有两种方法:
一种方法是在面中找到一条线与平行即可(一般情况下没有现成的线存在,这个时候需要我们在面做一条辅助线去跟线平行,一般这条辅助线的作法就是找中点);另一种方法就是过直线作一个平面与面平行即可,辅助面的作法也基本上是找中点。证面面平行这类题比较简单,即证明这两个平面的两条相交线对应平行即可。
做数学题的方法2
圆锥曲线解题技巧:
这类题型,其实难度真的不是很大,我个人理解主要是考大家的计算能力怎么样,还有就是对题目的理解能力,同时也希望大家都能明白圆锥曲线中a,b,c,e的含义以及他们之间的关系,还有就是椭圆、双曲线、抛物线的两种定义,如果你现在还不知道,趁早去记一下,不然考试的时候都不知道的哈。这种类型的题一般都是以下几种出法:第一个问一般情况就是求圆锥曲线方程或者就是求某一个点的轨迹方程,第二个问一般都是涉及到直线的问题,要么就是求范围,要么就是求定值,要么就是求直线方程解题思路:
求圆锥曲线方程:
一般情况下题目有两种求法,一种就是直接根据题目条件来求解(如题目告诉你曲线的离心率和过某一个点坐标),另一种就是隐含的告诉我们椭圆的定义,然后让我们去琢磨其中的意思,去写出曲线的方程,这种问法就比较难点,其实也主要是看我们的基本功底怎么样,对基础扎实的同学来说,这种问法也不是问题的。求轨迹方程:这种问题需要我们首先对要求点的坐标设出来A(x,y),然后用A点表示出题目中某一已知点B的坐标,然后用表示出来的点坐标代入点B的`轨迹方程中,这样就可以求出A点的轨迹方程了,一般求出来都是圆锥曲线方程,如果不是,你就可能错了。
函数导数解题技巧:
这种类型的题主要是考大家对导数公式的应用,导数的含义,明确导数可以用来干什么,如果你都不知道导数可以用来干什么,你还谈什么做题呢。在导数这块,我是希望大家都能尽量的多拿一些分数,因为其难度不是很大,主要你用心去学习了,记住方法了,这个分数对我们来说都是可以小菜一碟的。最值、单调性(极值)、未知数的取值范围(不等式)、未知数的取值范围(交点或者零点)
最值、单调性(极值):
首先对原函数求导,然后令导函数为零求出极值点,然后画出表格判断出在各个区间的单调性,最后得出结论。未知数的取值范围(不等式),其实它就是一种一种变相的求最值问题,不知道大家还记得么,记住我讲课的表情,未知数放在一边,把已知的数放在另外一边,求出相应的最值,咱们就胜利了,这个种看起来很复杂,其实很简单,你说呢。
未知数的取值范围(交点或者零点):
这种要是没有掌握方法的人,觉得,哇,怎么就那么难呀,其实不然,很简单的,只是各位你要明确这种题的解题思路哈。首先还是需要我们把要求的未知数放在一边,把知道的数放在一边去,这样去求出已知数的最值,然后简单的画一个图形我们就可以分析出未知数的取值范围了。
广告 您可能关注的内容 |