特征值为0的矩阵可逆吗

 我来答
华源网络
2022-11-19 · TA获得超过5599个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:148万
展开全部
是的。方阵可逆的充要条件是行列式非零,故不可逆有行列式为0,即0E-A的行列式为0,0是一个特征值。

在线性代数中,给定一个n阶方阵A,若存在一n阶方阵B使得AB=BA=E(或AB=E、BA=E任满足一个),其中E为n阶单位矩阵,则称A是可逆的,且B是A的逆阵,记作A^(-1)。

若方阵A的逆阵存在,则称A为非奇异方阵或可逆方阵。

扩展资料:

矩阵可逆的充分必要条件:

AB=E;

A为满秩矩阵(即r(A)=n);

A的特征值全不为0;

A的行列式|A|≠0,也可表述为A不是奇异矩阵(即行列式为0的矩阵);

A等价于n阶单位矩阵;

A可表示成初等矩阵的乘积;

齐次线性方程组AX=0 仅有零解;

非齐次线性方程组AX=b 有唯一解;

A的行(列)向量组线性无关;

任一n维向量可由A的行(列)向量组线性表示。

其实以上条件全部是等价的。
图为信息科技(深圳)有限公司
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。... 点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式