特征值为0的矩阵可逆吗
展开全部
是的。方阵可逆的充要条件是行列式非零,故不可逆有行列式为0,即0E-A的行列式为0,0是一个特征值。
在线性代数中,给定一个n阶方阵A,若存在一n阶方阵B使得AB=BA=E(或AB=E、BA=E任满足一个),其中E为n阶单位矩阵,则称A是可逆的,且B是A的逆阵,记作A^(-1)。
若方阵A的逆阵存在,则称A为非奇异方阵或可逆方阵。
扩展资料:
矩阵可逆的充分必要条件:
AB=E;
A为满秩矩阵(即r(A)=n);
A的特征值全不为0;
A的行列式|A|≠0,也可表述为A不是奇异矩阵(即行列式为0的矩阵);
A等价于n阶单位矩阵;
A可表示成初等矩阵的乘积;
齐次线性方程组AX=0 仅有零解;
非齐次线性方程组AX=b 有唯一解;
A的行(列)向量组线性无关;
任一n维向量可由A的行(列)向量组线性表示。
其实以上条件全部是等价的。
在线性代数中,给定一个n阶方阵A,若存在一n阶方阵B使得AB=BA=E(或AB=E、BA=E任满足一个),其中E为n阶单位矩阵,则称A是可逆的,且B是A的逆阵,记作A^(-1)。
若方阵A的逆阵存在,则称A为非奇异方阵或可逆方阵。
扩展资料:
矩阵可逆的充分必要条件:
AB=E;
A为满秩矩阵(即r(A)=n);
A的特征值全不为0;
A的行列式|A|≠0,也可表述为A不是奇异矩阵(即行列式为0的矩阵);
A等价于n阶单位矩阵;
A可表示成初等矩阵的乘积;
齐次线性方程组AX=0 仅有零解;
非齐次线性方程组AX=b 有唯一解;
A的行(列)向量组线性无关;
任一n维向量可由A的行(列)向量组线性表示。
其实以上条件全部是等价的。
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询