“十字相乘法”是怎样理解,怎样用,原理是什么

 我来答
黑科技1718
2022-10-21 · TA获得超过5910个赞
知道小有建树答主
回答量:433
采纳率:97%
帮助的人:83.2万
展开全部
分类: 教育/科学 >> 升学入学 >> 高考
解析:

1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。

2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。

3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。

4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。2、十字相乘法只适用于二次三项式类型的题目。3、十字相乘法比较难学。

5、十字相乘法解题实例:

1)、 用十字相乘法解一些简单常见的题目

例1把m²+4m-12分解因式

分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题

解:因为 1 -2

1 ╳ 6

所以m²+4m-12=(m-2)(m+6)

例2把5x²+6x-8分解因式

分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。当二次项系数分为1×5,常数项分为-4×2时,才符合本题

解: 因为 1 2

5 ╳ -4

所以5x²+6x-8=(x+2)(5x-4)

例3解方程x²-8x+15=0

分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。

解: 因为 1 -3

1 ╳ -5

所以原方程可变形(x-3)(x-5)=0

所以x1=3 x2=5

例4、解方程 6x²-5x-25=0

分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。

解: 因为 2 -5

3 ╳ 5

所以 原方程可变形成(2x-5)(3x+5)=0

所以 x1=5/2 x2=-5/3

2)、用十字相乘法解一些比较难的题目

例5把14x²-67xy+18y²分解因式

分析:把14x²-67xy+18y²看成是一个关于x的二次三项式,则14可分为1×14,2×7, 18y²可分为y.18y , 2y.9y , 3y.6y

解: 因为 2 -9y

7 ╳ -2y

所以 14x²-67xy+18y²= (2x-9y)(7x-2y)

例6 把10x²-27xy-28y²-x+25y-3分解因式

分析:在本题中,要把这个多项式整理成二次三项式的形式

解法一、10x²-27xy-28y²-x+25y-3

=10x²-(27y+1)x -(28y²-25y+3) 4y -3

7y ╳ -1

=10x²-(27y+1)x -(4y-3)(7y -1)

=[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1)

5 ╳ 4y - 3

=(2x -7y +1)(5x +4y -3)

说明:在本题中先把28y²-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把10x²-(27y+1)x -(4y-3)(7y -1)分解为[2x -(7y -1)][5x +(4y -3)]

解法二、10x²-27xy-28y²-x+25y-3

=(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y

=[(2x -7y)+1] [(5x -4y)-3] 5 ╳ 4y

=(2x -7y+1)(5x -4y -3) 2 x -7y 1

5 x - 4y ╳ -3

说明:在本题中先把10x²-27xy-28y²用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解为[(2x -7y)+1] [(5x -4y)-3].

例7:解关于x方程:x²- 3ax + 2a²–ab -b²=0

分析:2a²–ab-b²可以用十字相乘法进行因式分解

解:x²- 3ax + 2a²–ab -b²=0

x²- 3ax +(2a²–ab - b²)=0

x²- 3ax +(2a+b)(a-b)=0 1 -b

2 ╳ +b

[x-(2a+b)][ x-(a-b)]=0 1 -(2a+b)

1 ╳ -(a-b)

所以 x1=2a+b x2=a-b

两种相关联的变量之间的二次函数的关系,可以用三种不同形式的解析式表示:一般式、顶点式、交点式

交点式.

利用配方法,把二次函数的一般式变形为

Y=a[(x+b/2a)^2-(b^2-4ac)/4a^2]

应用平方差公式对右端进行因式分解,得

Y=a[x+b/2a+√b^2-4ac/2a][x+b/2a-√b^2-4ac/2a]

=a[x-(-b-√b^2-4ac)/2a][x-(-b+√b^2-4ac)/2a]

因一元二次方程ax^2+bx+c=0的两根分别为x1,2=(-b±√b^2-4ac)/2a

所以上式可写成y=a(x-x1)(x-x2),其中x1,x2是方程ax^2+bx+c=0的两个根

因x1,x2恰为此函数图象与x轴两交点(x1,0),(x2,0)的横坐标,故我们把函数y=a(x-x1)(x-x2)叫做函数的交点式.

在解决与二次函数的图象和x轴交点坐标有关的问题时,使用交点式较为方便.

二次函数的交点式还可利用下列变形方法求得:

设方程ax^2+bx+c=0的两根分别为x1,x2

根据根与系数的关系x1+x2=-b/a,x1x2=c/a,

有b/a=-(x1+x2),a/c=x1x2

∴y=ax^2+bx+c=a[x^2+b/a*x+c/a]

=a[x^2-(x1+x2)x+x1x2]=a(x-x1)(x-x2)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式