三角函数常见的求导公式有哪些

 我来答
舞侥评7
2022-12-20 · TA获得超过1266个赞
知道小有建树答主
回答量:833
采纳率:100%
帮助的人:80.5万
展开全部

  三角函数是高中函数中很常见的一种,那么关于三角函数的知识点大家都了解吗?下面是由我为大家整理的“三角函数常见的求导公式有哪些”,仅供参考,欢迎大家阅读本文。

   三角函数常见的求导公式

  1.锐角三角函数公式

  sinα=∠α的对边/斜边

  cosα=∠α的邻边/斜边

  tanα=∠α的对边/∠α的邻边

  cotα=∠α的邻边/∠α的对边

  2.倍角公式

  Sin2A=2SinA?CosA

  Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

  tan2A=(2tanA)/(1-tanA^2)

  (注:SinA^2是sinA的平方sin2(A))

  3.三倍角公式

  sin3α=4sinα•sin(π/3+α)sin(π/3-α)

  cos3α=4cosα•cos(π/3+α)cos(π/3-α)

  tan3a=tana•tan(π/3+a)•tan(π/3-a)

  4.三倍角公式推导

  sin3a=sin(2a+a)

  =sin2acosa+cos2asina

  5.辅助角公式

  Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

  sint=B/(A^2+B^2)^(1/2)

  cost=A/(A^2+B^2)^(1/2)

  tant=B/A

  Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

  6.四倍角公式

  sin4a=-4*[cosa*sina*(2*sina^2-1)]

  cos4a=1+(-8*cosa^2+8*cosa^4)

  tan4a=(4*tana-4*tana^3)/(1-6*tana^2+tana^4)

  7.降幂公式

  sin^2(α)=(1-cos(2α))/2=versin(2α)/2

  cos^2(α)=(1+cos(2α))/2=covers(2α)/2

  tan^2(α)=(1-cos(2α))/(1+cos(2α))

    常见公式集锦反三角函数:

  y=arcsin(x),定义域[-1,1],值域[-π/2,π/2]

  y=arccos(x),定义域[-1,1],值域[0,π]

  y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2)

  sinarcsin(x)=x,定义域[-1,1],值域【-π/2,π/2】

  反三角函数公式:

  arcsin(-x)=-arcsinx

  arccos(-x)=π-arccosx

  arctan(-x)=-arctanx

  arccot(-x)=π-arccotx

  arcsinx+arccosx=π/2=arctanx+arccotx

  sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)

  当x∈〔—π/2,π/2〕时,有arcsin(sinx)=x

  当x∈〔0,π〕,arccos(cosx)=x

  x∈(—π/2,π/2),arctan(tanx)=x

  x∈(0,π),arccot(cotx)=x x〉0,arctanx=arctan1/x,arccotx类似

  若(arctanx+arctany)∈(—π/2,π/2),

  则arctanx+arctany=arctan(x+y/1-xy)

  和差化积公式:

  sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

  sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

  cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

  cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

  拓展阅读:导数的求导法则

  由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:

  1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。

  2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。

  3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。

  4、如果有复合函数,则用链式法则求导。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式