发散乘发散、发散乘收敛、发散加发散、收敛乘收敛的结果都不一定,有可能发散也有可能收敛。
一个函数项级数如果在(各项的定义域内)某点不收敛,就称在此点发散,此点称为该级数的发散点。按照通常级数收敛与发散的定义,发散级数是没有意义的。
收敛级数的基本性质主要有:级数的每一项同乘一个不为零的常数后,它的收敛性不变;两个收敛级数逐项相加或逐项相减之后仍为收敛级数。
扩展资料:
级数的性质:
1、在级数中去掉、加上或改变有限项,不会改变级数的收敛性。
2、如果加括号后所成的级数发散,则原级数也发散。
3、两个收敛级数逐项相加或逐项相减之后仍为收敛级数。