求函数y=e的-x次方×cos的-x次方的二阶及三阶导数
2个回答
展开全部
我们可以使用链式法则和乘积法则来求解这个函数的高阶导数。
首先,我们有:
y = e^(-x) * cos(-x)
对y进行求导,得到:
y' = (-e^(-x) * cos(-x)) - (e^(-x) * sin(-x))
化简后,得到:
y' = -e^(-x) * (cos(x) + sin(x))
对y'再次求导,得到:
y'' = (-1 * -e^(-x) * (cos(x) + sin(x))) - (e^(-x) * (sin(x) - cos(x)))
化简后,得到:
y'' = e^(-x) * (2cos(x) - 2sin(x))
最后,对y''再次求导,得到:
y''' = (-1 * e^(-x) * (2cos(x) - 2sin(x))) - (e^(-x) * (2sin(x) + 2cos(x)))
化简后,得到:
y''' = -2e^(-x) * (cos(x) + 3sin(x))
因此,该函数的二阶导数为 y'' = e^(-x) * (2cos(x) - 2sin(x)),三阶导数为 y''' = -2e^(-x) * (cos(x) + 3sin(x))。
首先,我们有:
y = e^(-x) * cos(-x)
对y进行求导,得到:
y' = (-e^(-x) * cos(-x)) - (e^(-x) * sin(-x))
化简后,得到:
y' = -e^(-x) * (cos(x) + sin(x))
对y'再次求导,得到:
y'' = (-1 * -e^(-x) * (cos(x) + sin(x))) - (e^(-x) * (sin(x) - cos(x)))
化简后,得到:
y'' = e^(-x) * (2cos(x) - 2sin(x))
最后,对y''再次求导,得到:
y''' = (-1 * e^(-x) * (2cos(x) - 2sin(x))) - (e^(-x) * (2sin(x) + 2cos(x)))
化简后,得到:
y''' = -2e^(-x) * (cos(x) + 3sin(x))
因此,该函数的二阶导数为 y'' = e^(-x) * (2cos(x) - 2sin(x)),三阶导数为 y''' = -2e^(-x) * (cos(x) + 3sin(x))。
展开全部
使用链式法则来求解这个函数的一阶导数。设 $f(x) = e^{-x} \cos(-x)$,则有:
f
′
(
x
)
=
−
e
−
x
cos
(
−
x
)
−
e
−
x
sin
(
−
x
)
⋅
(
−
1
)
=
−
e
−
x
cos
(
−
x
)
+
e
−
x
sin
(
−
x
)
=
e
−
x
(
sin
(
x
)
−
cos
(
x
)
)
f
′
(x)=−e
−x
cos(−x)−e
−x
sin(−x)⋅(−1)
=−e
−x
cos(−x)+e
−x
sin(−x)
=e
−x
(sin(x)−cos(x))
接着,我们可以使用产品法则和链式法则来求解二阶导数。设 $g(x) = e^{-x}$ 和 $h(x) = \cos(-x)$,则有:
f
′
′
(
x
)
=
d
d
x
[
g
(
x
)
⋅
h
(
x
)
]
=
g
′
(
x
)
⋅
h
(
x
)
+
g
(
x
)
⋅
h
′
(
x
)
=
(
−
e
−
x
)
⋅
cos
(
−
x
)
+
e
−
x
⋅
sin
(
−
x
)
⋅
(
−
1
)
⋅
(
−
1
)
+
e
−
x
⋅
cos
(
−
x
)
=
e
−
x
(
2
cos
(
x
)
+
sin
(
x
)
)
f
′′
(x)
=
dx
d
[g(x)⋅h(x)]
=g
′
(x)⋅h(x)+g(x)⋅h
′
(x)
=(−e
−x
)⋅cos(−x)+e
−x
⋅sin(−x)⋅(−1)⋅(−1)
+e
−x
⋅cos(−x)
=e
−x
(2cos(x)+sin(x))
最后,我们可以使用链式法则来求解三阶导数。设 $k(x) = 2\cos(x) + \sin(x)$,则有:
f
′
′
′
(
x
)
=
d
d
x
[
e
−
x
⋅
k
(
x
)
]
=
e
−
x
⋅
k
′
(
x
)
+
e
−
x
⋅
k
(
x
)
⋅
(
−
1
)
=
e
−
x
(
−
2
sin
(
x
)
+
cos
(
x
)
)
+
e
−
x
⋅
(
2
cos
(
x
)
+
sin
(
x
)
)
⋅
(
−
1
)
=
−
e
−
x
(
3
sin
(
x
)
+
cos
(
x
)
)
f
′′′
(x)
=
dx
d
[e
−x
⋅k(x)]
=e
−x
⋅k
′
(x)+e
−x
⋅k(x)⋅(−1)
=e
−x
(−2sin(x)+cos(x))+e
−x
⋅(2cos(x)+sin(x))⋅(−1)
=−e
−x
(3sin(x)+cos(x))
因此,函数 $y = e^{-x} \cos(-x)$ 的二阶导数为 $e^{-x} (2\cos(x) + \sin(x))$,三阶导数为 $-e^{-x} (3\sin(x) + \cos(x))$。
f
′
(
x
)
=
−
e
−
x
cos
(
−
x
)
−
e
−
x
sin
(
−
x
)
⋅
(
−
1
)
=
−
e
−
x
cos
(
−
x
)
+
e
−
x
sin
(
−
x
)
=
e
−
x
(
sin
(
x
)
−
cos
(
x
)
)
f
′
(x)=−e
−x
cos(−x)−e
−x
sin(−x)⋅(−1)
=−e
−x
cos(−x)+e
−x
sin(−x)
=e
−x
(sin(x)−cos(x))
接着,我们可以使用产品法则和链式法则来求解二阶导数。设 $g(x) = e^{-x}$ 和 $h(x) = \cos(-x)$,则有:
f
′
′
(
x
)
=
d
d
x
[
g
(
x
)
⋅
h
(
x
)
]
=
g
′
(
x
)
⋅
h
(
x
)
+
g
(
x
)
⋅
h
′
(
x
)
=
(
−
e
−
x
)
⋅
cos
(
−
x
)
+
e
−
x
⋅
sin
(
−
x
)
⋅
(
−
1
)
⋅
(
−
1
)
+
e
−
x
⋅
cos
(
−
x
)
=
e
−
x
(
2
cos
(
x
)
+
sin
(
x
)
)
f
′′
(x)
=
dx
d
[g(x)⋅h(x)]
=g
′
(x)⋅h(x)+g(x)⋅h
′
(x)
=(−e
−x
)⋅cos(−x)+e
−x
⋅sin(−x)⋅(−1)⋅(−1)
+e
−x
⋅cos(−x)
=e
−x
(2cos(x)+sin(x))
最后,我们可以使用链式法则来求解三阶导数。设 $k(x) = 2\cos(x) + \sin(x)$,则有:
f
′
′
′
(
x
)
=
d
d
x
[
e
−
x
⋅
k
(
x
)
]
=
e
−
x
⋅
k
′
(
x
)
+
e
−
x
⋅
k
(
x
)
⋅
(
−
1
)
=
e
−
x
(
−
2
sin
(
x
)
+
cos
(
x
)
)
+
e
−
x
⋅
(
2
cos
(
x
)
+
sin
(
x
)
)
⋅
(
−
1
)
=
−
e
−
x
(
3
sin
(
x
)
+
cos
(
x
)
)
f
′′′
(x)
=
dx
d
[e
−x
⋅k(x)]
=e
−x
⋅k
′
(x)+e
−x
⋅k(x)⋅(−1)
=e
−x
(−2sin(x)+cos(x))+e
−x
⋅(2cos(x)+sin(x))⋅(−1)
=−e
−x
(3sin(x)+cos(x))
因此,函数 $y = e^{-x} \cos(-x)$ 的二阶导数为 $e^{-x} (2\cos(x) + \sin(x))$,三阶导数为 $-e^{-x} (3\sin(x) + \cos(x))$。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询