隐函数求导怎样求?
1、求隐函数的二阶偏导分两布:
(1)在方程两边先对X求一阶偏导得出Z关于X的一阶偏导,然后再解出Z关于X的一阶偏导。
(2)在在原来求过一阶偏导的方程两边对X再求一次偏导。此方程当中一定既含有X的一阶偏导,也含有二阶偏导。最后把(1)中解得的一阶偏导代入其中,就能得出只含有二阶偏导的方程,解出即可。
2、求导数,有三个法则 rule:
A、积的求导法则 = product rule;
B、商的求导法则 = quotient rule;
C、链式求导法则 = chain rule。
3、在多元函数的求导中,求的是偏导数,方法依然是这三个法则,尤其是链式求导法则,是我们自始至终必须使用的法则。无论是隐函数,还是显函数,或是复合函数,均是如此。
拓展资料
隐函数
求导法则
如果方程F(x,y)=0能确定y是x的函数,那么称这种方式表示的函数是隐函数。
而函数就是指:在某一变化过程中,两个变量x、y,对于某一范围内的x的每一个值,y都有确定的值和它对应,y就是x的函数。这种关系一般用y=f(x)即显函数来表示。
对于一个已经确定存在且可导的情况下,我们可以用复合函数求导的链式法则来进行求导。在方程左右两边都对x进行求导,由于y其实是x的一个函数,所以可以直接得到带有 y' 的一个方程,然后化简得到 y' 的表达式。
隐函数导数的求解一般可以采用以下方法:
方法①:先把隐函数转化成显函数,再利用显函数求导的方法求导;
方法②:隐函数左右两边对x求导(但要注意把y看作x的函数);
方法③:利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值。