八年级数学知识点总结北师大版

 我来答
爱提问的刘同学
2023-01-31 · TA获得超过294个赞
知道小有建树答主
回答量:139
采纳率:0%
帮助的人:68.1万
展开全部

   【篇一】

  函数及其相关概念

  1、变量与常量

  在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

  一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。

  2、函数解析式

  用来表示函数关系的数学式子叫做函数解析式或函数关系式。

  使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

  3、函数的三种表示法及其优缺点

  (1)解析法

  两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

  (2)列表法

  把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

  (3)图像法

  用图像表示函数关系的方法叫做图像法。

  4、由函数解析式画其图像的一般步骤

  (1)列表:列表给出自变量与函数的一些对应值

  (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

  (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

   【篇二】

  数据的收集、整理与描述

  一.知识框架

  二.知识概念

  1.全面调查:考察全体对象的调查方式叫做全面调查.

  2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查.

  3.总体:要考察的全体对象称为总体.

  4.个体:组成总体的每一个考察对象称为个体.

  5.样本:被抽取的所有个体组成一个样本.

  6.样本容量:样本中个体的数目称为样本容量.

  7.频数:一般地,我们称落在不同小组中的数据个数为该组的频数.

  8.频率:频数与数据总数的比为频率.

  9.组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距.

   【篇三】

  四边形

  平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

  平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。平行四边形的对角线互相平分。

  平行四边形的判定

  1.两组对边分别相等的四边形是平行四边形

  2.对角线互相平分的四边形是平行四边形;

  3.两组对角分别相等的四边形是平行四边形;

  4.一组对边平行且相等的四边形是平行四边形。

  三角形的中位线平行于三角形的第三边,且等于第三边的一半。

  直角三角形斜边上的中线等于斜边的一半。

  矩形的定义:有一个角是直角的平行四边形。

  矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。AC=BD

  矩形判定定理:

  1.有一个角是直角的平行四边形叫做矩形。

  2.对角线相等的平行四边形是矩形。

  3.有三个角是直角的四边形是矩形。

  菱形的定义:邻边相等的平行四边形。

  菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

  菱形的判定定理:

  1.一组邻边相等的平行四边形是菱形。

  2.对角线互相垂直的平行四边形是菱形。

  3.四条边相等的四边形是菱形。S菱形=1/2×ab(a、b为两条对角线)

  正方形定义:一个角是直角的菱形或邻边相等的矩形。

  正方形的性质:四条边都相等,四个角都是直角。正方形既是矩形,又是菱形。

  正方形判定定理:

  1.邻边相等的矩形是正方形。

  2.有一个角是直角的菱形是正方形。

  梯形的定义:一组对边平行,另一组对边不平行的四边形叫做梯形。

  直角梯形的定义:有一个角是直角的梯形

  等腰梯形的定义:两腰相等的梯形。

  等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。

  等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。

  解梯形问题常用的辅助线:如图

  线段的重心就是线段的中点。平行四边形的重心是它的两条对角线的交点。三角形的三条中线交于疑点,这一点就是三角形的重心。宽和长的比是-1(约为0.618)的矩形叫做黄金矩形。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式