如何理解集合中补集、并集、交集、差集、并集的概念?

 我来答
晚夏落飞霜
高粉答主

2023-03-26 · 繁杂信息太多,你要学会辨别
知道小有建树答主
回答量:1297
采纳率:100%
帮助的人:47万
展开全部

1、并集

对于两个给定集合A、B,由两个集合所有元素构成的集合,叫做A和B的并集。

记作:AUB  读作“A并B”

例: {3,5}U{2,3,4,6}= {2,3,4,5,6}

2、交集

对于两个给定集合A、B,由属于A又属于B的所有元素构成的集合,叫做A和B的交集。

记作: A∩B   读作“A交B”

例: A={1,2,3,4,5},B={3,4,5,6,8},A∩B={3,4,5}

3、差集

记A,B是两个集合,则所有属于A且不属于B的元素构成的集合,叫做集合A减集合B(或集合A与集合B之差),类似地,对于集合A、B,把集合{x∣x∈A,且x∉B}叫做A与B的差集。

记作:B-A

4、补集

一般地,设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做子集A在S中的绝对补集。

记作:∁UA,包括三层含义:

1)A是U的一个子集,即A⊊U;

2)∁UA表示一个集合,且∁UA⊊U;

3)∁UA是由U中所有不属于A的元素组成的集合,∁UA与A没有公共元素,U中的元素分布在这两个集合中。

举例:全集为{1,2,3,4,5} 那么{1,2}的补集就是{3,4,5}

扩展资料

集合中的补集思想

在涉及到“否定”“至多”、“至少”、“存在型”命题时,从正面人手难度较大,这时可运用补集思想从“反面”人手,能使解答过程简单明了,其解题策略是“正难则反”。

例题:已知三个关于x的方程x^2十4ax-4a+3=0,x^2+(a- 1)x+a^2=0,x^2+ 2ax-2a=0中至少有一个方程有实根,求实数a的取值范围。

解析:本题从正面求解要研究三个方程的判别式,需分三类共七种情况讨论求解,过程极其复杂,但用补集思想十分容易获解,这是因为“至少有一个方程有实根”的反面是“三个方程均无实根”。

解:

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式