1平方+2平方+3平方+平方=?
1个回答
展开全部
楼上为正解。推导过程:
(数学归纳法)
1的平方+2的平方
=
1*(1+1)*(2*1+1)/6
=
5
假设
1的平方+2的平方+3的平方+……+n的平方
=
n(n+1)(2n+1)/6
那么
1的平方+2的平方+3的平方+……+n的平方+(n+1)的平方
=
n(n+1)(2n+1)/6
+
(n+1)*(n+1)
=(n+1)/6
*
(n(2n+1)+6(n+1))
=
(n+1)((n+1)+1)(2(n+1)+1)/6
因此,假设成立。完成。
(数学归纳法)
1的平方+2的平方
=
1*(1+1)*(2*1+1)/6
=
5
假设
1的平方+2的平方+3的平方+……+n的平方
=
n(n+1)(2n+1)/6
那么
1的平方+2的平方+3的平方+……+n的平方+(n+1)的平方
=
n(n+1)(2n+1)/6
+
(n+1)*(n+1)
=(n+1)/6
*
(n(2n+1)+6(n+1))
=
(n+1)((n+1)+1)(2(n+1)+1)/6
因此,假设成立。完成。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询