矩阵特征值相同,特征向量一定相同吗?

 我来答
道阻长
2023-07-01 · TA获得超过6181个赞
知道小有建树答主
回答量:105
采纳率:100%
帮助的人:1.6万
展开全部

它们的特征值相同,特征向量不一定相同。

相似则特征多项式相同,
所以矩阵A和B的特征值相同。

而对于相同的特征值x,
An=xn,n为特征向量,一样的矩阵特征向量不一定相同。

扩展资料:

一、矩阵的特征值求值方法:

Ax=mx,等价于求m,使得(mE-A)x=0,其中E是单位矩阵,0为零矩阵。

|mE-A|=0,求得的m值即为A的特征值。|mE-A| 是一个n次多项式,它的全部根就是n阶方阵A的全部特征值,这些根有可能相重复,也有可能是复数。

如果n阶矩阵A的全部特征值为m1 m2 ... mn,则|A|=m1*m2*...*mn

同时矩阵A的迹是特征值之和:tr(A)=m1+m2+m3+…+mn[1]

如果n阶矩阵A满足矩阵多项式方程g(A)=0, 则矩阵A的特征值m一定满足条件g(m)=0;特征值m可以通过解方程g(m)=0求得。

还可用mathematica求得。

二、矩阵的特征向量求值方法:

对于矩阵A,由AX=λ0X,λ0EX=AX,得[λ0E-A]X=θ即齐次线性方程组

有非零解的充分必要条件是:

即说明特征根是特征多项式|λ0E-A| =0的根,由代数基本定理

有n个复根λ1,λ2,…,λn,为A的n个特征根。

当特征根λi(I=1,2,…,n)求出后,(λiE-A)X=θ是齐次方程,λi均会使|λiE-A|=0,(λiE-A)X=θ必存在非零解,且有无穷个解向量,(λiE-A)X=θ的基础解系以及基础解系的线性组合都是A的特征向量。

Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式