x→0+时, e^ x有极限吗?
1个回答
展开全部
只能是x→0+,极限是1
解答过程:
lim(x→0+)(x^x)
=lim(x→0+) e^ln(x^x)
=lim(x→0+) e^(xlnx)
=e^lim(x→0+) (xlnx)
=e^0
=1
扩展资料:
空间的研究源自于欧式几何.三角学则结合了空间极数,且包含有非常著名的勾股定理、三角函数等。现今对空间的研究更推广到了更高维的几何、非欧几何及拓扑学.数和空间在解析几何、微分几何和代数几何中都有着很重要的角色.在微分几何中有着纤维丛及流形上的计算等概念.在代数几何中有着如多项式方程的解集等几何对象的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间.李群被用来研究空间、结构及变化.
参考资料:百度百科.数学
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询