如何用行列式解线性代数方程?
1个回答
展开全部
特征多项式 有了,则-1 1 1是A的三个特征值,-3 -1 -1就是A-2E的特征值,行列式为(-3)×(-1)×(-1)=-3。
由题知a1 a2 a3是基础解系,与基础解系等价的任一向量组也是基础解系。B中前两个向量之和是第三个,线性相关。C中三个向量之和是0,线性相关。D中第一个向量减去第二个向量+第三个向量是0,线性相关。只有A中三个向量是无关的,是基础解系。
(A^2-4E)=[(A+2E)(A-2E)]^(-1)=(A-2E)^(-1)(A+2E)^(-1),因此乘后得(A+2E)^(-1)
由题知a1 a2 a3是基础解系,与基础解系等价的任一向量组也是基础解系。B中前两个向量之和是第三个,线性相关。C中三个向量之和是0,线性相关。D中第一个向量减去第二个向量+第三个向量是0,线性相关。只有A中三个向量是无关的,是基础解系。
(A^2-4E)=[(A+2E)(A-2E)]^(-1)=(A-2E)^(-1)(A+2E)^(-1),因此乘后得(A+2E)^(-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询