数列an是等差数列的充要条件
数列an是等差数列的充要条件是an+1-an=常数。
数列,是以正整数集为定义域的一列有序的数。数列中的每一个数都叫作这个数列的项。排在第一位的数称为这个数列的首项,排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。
等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。
等差数列的应用日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。
其实,中国古代南北朝的张丘建早已在《张丘建算经》提到等差数列了:今有女子不善织布,逐日所织的布以同数递减,初日织五尺,末一日织一尺,计织三十日,问共织几何?书中的解法是:并初、末日织布数,半之,余以乘织讫日数,即得。
数列的性质:
1、任意两项am,an的关系为:an=am+(n-m)d,它可以看作等差数列广义的通项公式。
2、从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N*。
3、若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq。
4、对任意的k∈N*,有Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差数列。