求函数值域常用方法

要有类型题的!!高三复习... 要有类型题的!!高三复习 展开
 我来答
百度网友43311eab652
推荐于2017-10-03 · TA获得超过2.4万个赞
知道大有可为答主
回答量:1839
采纳率:47%
帮助的人:324万
展开全部


        求函数值域的常用方法有:配方法,分离常数法,判别式法,反解法,换元法,不等式法,单调性法,函数有界性法,数形结合法,导数法。
        一、配方法
        

        二、反解法
        

        三、分离常数法
        

        四、判别式法
        

        五、换元法
        

        六、不等式法
        

        七、函数有界性法
        直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。
        

        八、函数单调性法 
        先确定函数在其定义域(或定义域的某个子集上)的单调性,再求出函数值域的方法。考虑这一方法的是某些由指数形式的函数或对数形式的函数构成的一些简单的初等函数,可直接利用指数或对数的单调性求得答案;还有一些形如,看a,d是否同号,若同号用单调性求值域,若异号则用换元法求值域;还有的在利用重要不等式求值域失败的情况下,可采用单调性求值域。
        

        九、数形结合法
        其题型是函数解析式具有明显的某种几何意义,如两点的距离公式、直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。
        

        十、导数法
        利用导数求闭区间上函数的值域的一般步骤:(1)求导,令导数为0;(2)确定极值点,求极值;(3)比较端点与极值的大小,确定最大值与最小值即可确定值域。
        

        总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。

Sievers分析仪
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
598670034
2009-08-17 · TA获得超过3944个赞
知道小有建树答主
回答量:883
采纳率:0%
帮助的人:1200万
展开全部
1:直接法:从自变量的范围出发,推出值域,也就是直接看咯。这个不用例题了吧?

2:分离常数法
例题:y=(1-x^2)/(1+x^2)

解,y=(1-x^2)/(1+x^2)
=2/(1+x^2)-1

∵1+x^2≥1,∴0<2/(1+x^2)≤2
∴-1< y≤1 即y∈(-1,1】

3:配方法(或者说是最值法)
求出最大值还有最小值,那么值域不就出来了吗。

例题:y=x^2+2x+3 x∈【-1,2】

先配方,得y=(x+1)^2+1
∴ymin=(-1+1)^2+2=2
ymax=(2+1)^2+2=11

4:判别式法,运用方程思想,根据二次方程有实根求值域
不好意思,当初做笔记的时候忘记抄例题了,不过这种方法不是很常用。

5:换元法:适用于有根号的函数

例题:y=x-√(1-2x)

设√(1-2x)=t(t≥0)
∴x=(1-t^2)/2
∴y=(1-t^2)/2-t
=-t^2/2-t+1/2
=-1/2(t+1)^2+1

∵t≥0,∴y∈(-∝,1/2)

6:图像法,直接画图看值域

例题:y=|x+1|+√(x-2)^2

这是一个分段函数,你画出图后就可以一眼看出值域。

7:反函数法。求反函数的定义域,就是原函数的值域。

例题:y=(3x-1)/(3x-2)

先求反函数y=(2x-1)/(3x-3)
明显定义域为x≠1
所以原函数的值域为y≠1

参考资料: 我的数学笔记

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
佳木数学课堂
2020-10-22 · 我只是一个能力一般的高考状元
佳木数学课堂
采纳数:15 获赞数:143

向TA提问 私信TA
展开全部

求函数值域,方法巧妙,拍案叫绝!

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帐号已注销
2020-07-09
知道答主
回答量:1
采纳率:0%
帮助的人:604
展开全部
第七个Sinx=负y分之一
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式