初二 数学 趣味性数学题,请写详细过程 请详细解答,谢谢! (17 16:58:43)

(1)如果对不小于8的自然数n,当3n+1是完全平方数时,n+1都能表示成k个平方数的和,那么k的最小值是多少?(2)一架飞机从A城飞往B城,然后再返回A城,在无风的情况... (1)如果对不小于8的自然数n,当3n+1是完全平方数时,n+1都能表示成k个平方数的和,那么k的最小值是多少?
(2)一架飞机从A城飞往B城,然后再返回A城,在无风的情况下,它整个往返飞行的平均地速(相对于地面的速度)为每小时100英里。假设沿着从A城B城的方向笔直的刮着一股持续的大风,如果在飞机往返飞行的整个过程中发动机的速度同往常的完全一样,这股风将对往返飞行的平均时速有何影响?
(3)数学家维纳斯今年的岁数的立方是个四位数,岁数的4次方是个六位数,这两个数,刚好把十个数字0、1、2、3、4、5、6、7、8、9、全都用上了,问 维纳斯的年龄是多少?
展开
为知读书
2009-08-17 · TA获得超过2.2万个赞
知道大有可为答主
回答量:3191
采纳率:33%
帮助的人:3030万
展开全部
1
由已知3n+1是一个完全平方数,
所以我们就设3n+1=a^2,
显然a^2不是3的倍数,于是a=3k±1,
从而3n+1=a^2=9k^2±6k+1,n=3k^2±2k
即n+1=2k^2+(k±1)^2,所以k的最小值是3.

2
设路程为Y 风为X

没风有

100英里

有风
100-
时间=Y/(100+X)+Y/(100-X) V=Y/T=1/[1/(100+X)+1/(100-X)]= (100+X)*(100-X)/100小于100 所以平均速度变小

3在博士学位的授予仪式上,执行主席看到一脸稚气的维纳,颇为惊讶,于是就当面询问他的年龄。维纳不愧为数学神童,他的回答十分巧妙:“我今年岁数的立方是个四位数,岁数的四次方是个六位数,这两个数,刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,不重不漏。这意味着全体数字都向我俯首称臣,预祝我将来在数学领域里一定能干出一番惊天动地的大事业。”

维纳此言一出,四座皆惊,大家都被他的这道妙题深深地吸引住了。整个会场上的人,都在议论他的年龄问题。

其实这个问题不难解答,但是需要一点数字“灵感”。不难发现,21的立方是四位数,而22的立方已经是五位数了,所以维纳的年龄最多是21岁;同样道理,18的四次方是六位数,而17的四次方则是五位数了,所以维纳的年龄至少是18岁。这样,维纳的年龄只可能是18、19、20、21这四个数中的一个。

剩下的工作就是“一一筛选”了。20的立方是8000,有3个重复数字0,不合题意。同理,19的四次方等于130321,21的四次方等于194481,都不合题意。最后只剩下一个18,是不是正确答案呢?验算一下,18的立方等于5832,四次方等于104976,恰好“不重不漏”地用完了十个阿拉伯数字,多么完美的组合!

这个年仅18岁的少年博士,后来果然成就了一番大事业:他成为信息论的前驱和控制论的奠基人。
喵喵百分点
2009-08-18 · TA获得超过4108个赞
知道小有建树答主
回答量:224
采纳率:0%
帮助的人:112万
展开全部
注意!(1)的答案是2。(2)中飞机的速度是(100+X)*(100-X)/200英里,是除以200,不是100!
祝你成功!

1
由已知3n+1是一个完全平方数,
所以我们就设3n+1=a^2,
显然a^2不是3的倍数,于是a=3k±1,
从而3n+1=a^2=9k^2±6k+1,n=3k^2±2k
即n+1=2k^2+(k±1)^2,所以k的最小值是2.

2
设路程为Y 风为X

没风有

100英里

有风
时间=Y/(100+X)+Y/(100-X) V=Y/T=1/[1/(100+X)+1/(100-X)]= (100+X)*(100-X)/200小于100 所以平均速度变小

3在博士学位的授予仪式上,执行主席看到一脸稚气的维纳,颇为惊讶,于是就当面询问他的年龄。维纳不愧为数学神童,他的回答十分巧妙:“我今年岁数的立方是个四位数,岁数的四次方是个六位数,这两个数,刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,不重不漏。这意味着全体数字都向我俯首称臣,预祝我将来在数学领域里一定能干出一番惊天动地的大事业。”

维纳此言一出,四座皆惊,大家都被他的这道妙题深深地吸引住了。整个会场上的人,都在议论他的年龄问题。

其实这个问题不难解答,但是需要一点数字“灵感”。不难发现,21的立方是四位数,而22的立方已经是五位数了,所以维纳的年龄最多是21岁;同样道理,18的四次方是六位数,而17的四次方则是五位数了,所以维纳的年龄至少是18岁。这样,维纳的年龄只可能是18、19、20、21这四个数中的一个。

剩下的工作就是“一一筛选”了。20的立方是8000,有3个重复数字0,不合题意。同理,19的四次方等于130321,21的四次方等于194481,都不合题意。最后只剩下一个18,是不是正确答案呢?验算一下,18的立方等于5832,四次方等于104976,恰好“不重不漏”地用完了十个阿拉伯数字,多么完美的组合!

这个年仅18岁的少年博士,后来果然成就了一番大事业:他成为信息论的前驱和控制论的奠基人。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
无意义灌水
2009-08-18
知道答主
回答量:13
采纳率:0%
帮助的人:0
展开全部
3在博士学位的授予仪式上,执行主席看到一脸稚气的维纳,颇为惊讶,于是就当面询问他的年龄。维纳不愧为数学神童,他的回答十分巧妙:“我今年岁数的立方是个四位数,岁数的四次方是个六位数,这两个数,刚好把十个数字0、1、2、3、4、5、6、7、8、9全都用上了,不重不漏。这意味着全体数字都向我俯首称臣,预祝我将来在数学领域里一定能干出一番惊天动地的大事业。”

维纳此言一出,四座皆惊,大家都被他的这道妙题深深地吸引住了。整个会场上的人,都在议论他的年龄问题。

其实这个问题不难解答,但是需要一点数字“灵感”。不难发现,21的立方是四位数,而22的立方已经是五位数了,所以维纳的年龄最多是21岁;同样道理,18的四次方是六位数,而17的四次方则是五位数了,所以维纳的年龄至少是18岁。这样,维纳的年龄只可能是18、19、20、21这四个数中的一个。

剩下的工作就是“一一筛选”了。20的立方是8000,有3个重复数字0,不合题意。同理,19的四次方等于130321,21的四次方等于194481,都不合题意。最后只剩下一个18,是不是正确答案呢?验算一下,18的立方等于5832,四次方等于104976,恰好“不重不漏”地用完了十个阿拉伯数字,多么完美的组合!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
安度罗
2009-08-18 · TA获得超过189个赞
知道答主
回答量:215
采纳率:0%
帮助的人:102万
展开全部
(3)18岁
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式