在三角形ABC中,求证(b-c)sinA+(c-a)sinB+(a-b)sinC=0

她是朋友吗
推荐于2016-12-02 · TA获得超过7.6万个赞
知道大有可为答主
回答量:1.1万
采纳率:0%
帮助的人:1.5亿
展开全部
利用正弦定理:
a / sinA = b / sinB = c / sinC = 2R(R为三角形外接圆的半径)
所以:
sinA = a / 2R
sinB = b / 2R
sinC = c / 2R

代入,得:
( b-c )sinA+( c-a )sinB+( a-b )sinC
= (b - c)*a / 2R + (c - a)*b / 2R + (a - b)*c / 2R
= (ab - ac + bc - ab + ac - bc) / 2R
= 0
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式