若方程lg(kx)=2lg(x+1)只有一个实数解,则常数k的取值范围是多少? (详细过程)
2个回答
展开全部
lg(kx)=2lg(x+1)
lg(kx)=lg(x+1)^2
kx=(x+1)^2
x^2+2x-kx+1=0
只有一个实根,Δ=0
(2-k)^2-4=0
4-4k+k^2-4=0
k^2-4k=0
k=4 or k=0(舍)
这里解出的k是直线y=kx与抛物线y=(x+1)^2恰好相切的特例。
因此,根据数形结合的思想,画出对应的图像,不难发现:当y=kx逆时针旋转到接近x=0时,kx=(x+1)^2只有一个实数解仍然成立,因此k>=4
lg(kx)=lg(x+1)^2
kx=(x+1)^2
x^2+2x-kx+1=0
只有一个实根,Δ=0
(2-k)^2-4=0
4-4k+k^2-4=0
k^2-4k=0
k=4 or k=0(舍)
这里解出的k是直线y=kx与抛物线y=(x+1)^2恰好相切的特例。
因此,根据数形结合的思想,画出对应的图像,不难发现:当y=kx逆时针旋转到接近x=0时,kx=(x+1)^2只有一个实数解仍然成立,因此k>=4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询