若方程lg(kx)=2lg(x+1)只有一个实数解,则常数k的取值范围是多少? (详细过程)

艾得狂野
2009-08-21 · TA获得超过1.3万个赞
知道大有可为答主
回答量:4528
采纳率:0%
帮助的人:8049万
展开全部
lg(kx)=2lg(x+1)
kx=(x+1)^2
x^2+2x-kx+1=0
只有一个实数解
判别式=0
(2-k)^2-4=0
4-4k+k^2-4=0
k^2-4k=0
k=4 or k=0(舍)

k=4
百度网友e5a95a82b4a
2009-08-21 · TA获得超过4494个赞
知道小有建树答主
回答量:776
采纳率:0%
帮助的人:997万
展开全部
lg(kx)=2lg(x+1)
lg(kx)=lg(x+1)^2
kx=(x+1)^2
x^2+2x-kx+1=0
只有一个实根,Δ=0
(2-k)^2-4=0
4-4k+k^2-4=0
k^2-4k=0
k=4 or k=0(舍)
这里解出的k是直线y=kx与抛物线y=(x+1)^2恰好相切的特例。
因此,根据数形结合的思想,画出对应的图像,不难发现:当y=kx逆时针旋转到接近x=0时,kx=(x+1)^2只有一个实数解仍然成立,因此k>=4
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式