各位,拜托帮忙解析一道数学题,解题步骤有,就是看不懂!!!!
(1+1/1997+1/1999+1/2001)×(1/1997+1/1999+1/2001+1/2003)-(1+1/1997+1/1999+1/2001+1/2003...
(1+1/1997+1/1999+1/2001)×(1/1997+1/1999+1/2001+1/2003)-(1+1/1997+1/1999+1/2001+1/2003)×(1/1997+1/1999+1/2001)=[1+(1/1997+1/1999+1/2001)]×(1/1997+1/1999+1/2001+1/2003)-[1+(1/1997+1/1999+1/2001+1/2003)]×(1/1997+1/1999+1/2001)=1/1997+1/1999+1/2001+1/2003-1/1997-/1999-1/2001=1/2003
展开
展开全部
你这个问题这样看就容易了。
设:a=1/1997+1/1999+1/2001;
原式(1+1/1997+1/1999+1/2001)×(1/1997+1/1999+1/2001+1/2003)-(1+1/1997+1/1999+1/2001+1/2003)×(1/1997+1/1999+1/2001)
=[1+(1/1997+1/1999+1/2001)]×[(1/1997+1/1999+1/2001)+1/2003)]
-[1+(1/1997+1/1999+1/2001)+1/2003]×(1/1997+1/1999+1/2001)
=(1+a)(a+1/2003)-(1+a+1/2003)a
=a+1/2003+a^2+(1/2003)a-a+a^2-(1/2003)a
=1/2003
看明白了吧?就是同类项整理。
设:a=1/1997+1/1999+1/2001;
原式(1+1/1997+1/1999+1/2001)×(1/1997+1/1999+1/2001+1/2003)-(1+1/1997+1/1999+1/2001+1/2003)×(1/1997+1/1999+1/2001)
=[1+(1/1997+1/1999+1/2001)]×[(1/1997+1/1999+1/2001)+1/2003)]
-[1+(1/1997+1/1999+1/2001)+1/2003]×(1/1997+1/1999+1/2001)
=(1+a)(a+1/2003)-(1+a+1/2003)a
=a+1/2003+a^2+(1/2003)a-a+a^2-(1/2003)a
=1/2003
看明白了吧?就是同类项整理。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询