2个回答
展开全部
解A中的不等式,可求得-2≤x≤5
所以A表示{x|-2≤x≤5}
又因为A∩B≠空集
所以A、B有公共部分
你可以在数轴上画出A的部分,然后求出B的范围。
不过要注意B中的m+1≤2m-1这个条件(这个不等式的解是m≥2)
算了,都答到这份上了干脆连下面的也一起说了。
你先在数轴上画出A的范围,然后看图。
因为B={x|m+1≤x≤2m-1},所以2m-1<-2或m+1>5时A∩B=空集
解之得:m<-1/2或m>4
在R中取这两个集合的补集,也就是当-1/2≤m≤4时A∩B≠空集
由之前那一个条件知m≥2
所以m属于[2,4]
所以A表示{x|-2≤x≤5}
又因为A∩B≠空集
所以A、B有公共部分
你可以在数轴上画出A的部分,然后求出B的范围。
不过要注意B中的m+1≤2m-1这个条件(这个不等式的解是m≥2)
算了,都答到这份上了干脆连下面的也一起说了。
你先在数轴上画出A的范围,然后看图。
因为B={x|m+1≤x≤2m-1},所以2m-1<-2或m+1>5时A∩B=空集
解之得:m<-1/2或m>4
在R中取这两个集合的补集,也就是当-1/2≤m≤4时A∩B≠空集
由之前那一个条件知m≥2
所以m属于[2,4]
展开全部
A
x^2-3x-10<=0
-2<=x<=5
A∩B≠空集,
所以首先B不是空集
所以必须m+1<=2m-1
m>=2
其次
若-2<=x<=5和m+1<=x<=2m-1没有公共部分
则有m+1<=x<=2m-1<-2<=x<=5,即2m-1<-2,m<-1/2
或者-2<=x<=5<m+1<=x<=2m-1,即5<m+1,m>4
现在交集不是空集则有公共部分
所以应有-1/2<=m<=4
综上
2<=m<=4
x^2-3x-10<=0
-2<=x<=5
A∩B≠空集,
所以首先B不是空集
所以必须m+1<=2m-1
m>=2
其次
若-2<=x<=5和m+1<=x<=2m-1没有公共部分
则有m+1<=x<=2m-1<-2<=x<=5,即2m-1<-2,m<-1/2
或者-2<=x<=5<m+1<=x<=2m-1,即5<m+1,m>4
现在交集不是空集则有公共部分
所以应有-1/2<=m<=4
综上
2<=m<=4
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询