
柯西不等式一道题,求高人解答
a+b+c=1,是否存在实数K,abc都是正实数,使√4a+1+√4B+1+√4c+1小于k恒成立?如存在,求K的范围...
a+b+c=1,是否存在实数K,abc都是正实数,使√4a+1 +√4B+1 +√4c+1小于k恒成立?如存在,求K的范围
展开
1个回答
展开全部
√(4a+1) +√(4b+1)+√(4c+1)显然大于0
平方
=4a+1+4b+1+4c+1+2√(4a+1)*√(4b+1)+2√(4a+1)*√(4c+1)+2√(4b+1)*√(4c+1)
=4(a+b+c)+3+2√(4a+1)*√(4b+1)+2√(4a+1)*√(4c+1)+2√(4b+1)*√(4c+1)
=7+2√(4a+1)*√(4b+1)+2√(4a+1)*√(4c+1)+2√(4b+1)*√(4c+1)
因为2xy<=x^2+y^2
所以2√(4a+1)*√(4b+1)<=4a+1+4b+1
2√(4a+1)*√(4c+1)<=4a+1+4c+1
2√(4b+1)*√(4c+1)<=4b+1+4c+1
所以2√(4a+1)*√(4b+1)+2√(4a+1)*√(4c+1)+2√(4b+1)*√(4c+1)<=8(a+b+c)+6=8+6=14
所以
[√(4a+1) +√(4b+1)+√(4c+1)]^2<=7+14=21
所以√(4a+1) +√(4b+1)+√(4c+1)<=√21
所以存在,只要k>√21即可
平方
=4a+1+4b+1+4c+1+2√(4a+1)*√(4b+1)+2√(4a+1)*√(4c+1)+2√(4b+1)*√(4c+1)
=4(a+b+c)+3+2√(4a+1)*√(4b+1)+2√(4a+1)*√(4c+1)+2√(4b+1)*√(4c+1)
=7+2√(4a+1)*√(4b+1)+2√(4a+1)*√(4c+1)+2√(4b+1)*√(4c+1)
因为2xy<=x^2+y^2
所以2√(4a+1)*√(4b+1)<=4a+1+4b+1
2√(4a+1)*√(4c+1)<=4a+1+4c+1
2√(4b+1)*√(4c+1)<=4b+1+4c+1
所以2√(4a+1)*√(4b+1)+2√(4a+1)*√(4c+1)+2√(4b+1)*√(4c+1)<=8(a+b+c)+6=8+6=14
所以
[√(4a+1) +√(4b+1)+√(4c+1)]^2<=7+14=21
所以√(4a+1) +√(4b+1)+√(4c+1)<=√21
所以存在,只要k>√21即可
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询